Suppr超能文献

结合机器学习和动态系统技术,在常规收集的基层医疗记录中早期发现呼吸道疾病暴发。

Combining machine learning and dynamic system techniques to early detection of respiratory outbreaks in routinely collected primary healthcare records.

作者信息

Borges Dérick G F, Coutinho Eluã R, Cerqueira-Silva Thiago, Grave Malú, Vasconcelos Adriano O, Landau Luiz, Coutinho Alvaro L G A, Ramos Pablo Ivan P, Barral-Netto Manoel, Pinho Suani T R, Barreto Marcos E, Andrade Roberto F S

机构信息

Center of Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, Fiocruz Bahia, Salvador, Brazil.

Physics Institute, Federal University of Bahia (UFBA), 40170-115, Salvador, Bahia, Brazil.

出版信息

BMC Med Res Methodol. 2025 Apr 16;25(1):99. doi: 10.1186/s12874-025-02542-0.

Abstract

BACKGROUND

Methods that enable early outbreak detection represent powerful tools in epidemiological surveillance, allowing adequate planning and timely response to disease surges. Syndromic surveillance data collected from primary healthcare encounters can be used as a proxy for the incidence of confirmed cases of respiratory diseases. Deviations from historical trends in encounter numbers can provide valuable insights into emerging diseases with the potential to trigger widespread outbreaks.

METHODS

Unsupervised machine learning methods and dynamical systems concepts were combined into the Mixed Model of Artificial Intelligence and Next-Generation (MMAING) ensemble, which aims to detect early signs of outbreaks based on primary healthcare encounters. We used data from 27 Brazilian health regions, which cover 41% of the country's territory, from 2017-2023 to identify anomalous increases in primary healthcare encounters that could be associated with an epidemic onset. Our validation approach comprised (i) a comparative analysis across Brazilian capitals; (ii) an analysis of warning signs for the COVID-19 period; and (iii) a comparison with related surveillance methods (namely EARS C1, C2, C3) based on real and synthetic labeled data.

RESULTS

The MMAING ensemble demonstrated its effectiveness in early outbreak detection using both actual and synthetic data, outperforming other surveillance methods. It successfully detected early warning signals in synthetic data, achieving a probability of detection of 86%, a positive predictive value of 85%, and an average reliability of 79%. When compared to EARS C1, C2, and C3, it exhibited superior performance based on receiver operating characteristic (ROC) curve results on synthetic data. When evaluated on real-world data, MMAING performed on par with EARS C2. Notably, the MMAING ensemble accurately predicted the onset of the four waves of the COVID-19 period in Brazil, further validating its effectiveness in real-world scenarios.

CONCLUSION

Identifying trends in time series data related to primary healthcare encounters indicated the possibility of developing a reliable method for the early detection of outbreaks. MMAING demonstrated consistent identification capabilities across various scenarios, outperforming established reference methods.

摘要

背景

能够实现早期疫情检测的方法是流行病学监测中的有力工具,有助于进行充分规划并及时应对疾病激增情况。从基层医疗就诊中收集的症候群监测数据可作为呼吸道疾病确诊病例发病率的替代指标。就诊人数偏离历史趋势可为可能引发广泛疫情的新发疾病提供有价值的见解。

方法

将无监督机器学习方法和动态系统概念结合到人工智能与下一代混合模型(MMAING)集成中,该集成旨在基于基层医疗就诊情况检测疫情的早期迹象。我们使用了2017年至2023年来自巴西27个卫生区域的数据,这些区域覆盖该国41%的领土,以识别可能与疫情爆发相关的基层医疗就诊异常增加情况。我们的验证方法包括:(i)对巴西各首府进行比较分析;(ii)分析新冠疫情期间的预警信号;(iii)基于真实和合成标记数据与相关监测方法(即EARS C1、C2、C3)进行比较。

结果

MMAING集成在使用实际数据和合成数据进行早期疫情检测方面都证明了其有效性,优于其他监测方法。它在合成数据中成功检测到早期预警信号,检测概率达到86%,阳性预测值为85%,平均可靠性为79%。与EARS C1、C2和C3相比,基于合成数据的受试者工作特征(ROC)曲线结果,它表现出更优的性能。在真实世界数据上进行评估时,MMAING的表现与EARS C2相当。值得注意的是,MMAING集成准确预测了巴西新冠疫情期间的四波疫情爆发,进一步验证了其在现实场景中的有效性。

结论

识别与基层医疗就诊相关的时间序列数据中的趋势表明,有可能开发出一种可靠的早期疫情检测方法。MMAING在各种场景中都表现出一致的识别能力,优于既定的参考方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a1a/12004868/84a411a7c588/12874_2025_2542_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验