Suppr超能文献

利用自动化趋势拟合和异常检测实时监测 COVID-19 动态。

Real-time monitoring of COVID-19 dynamics using automated trend fitting and anomaly detection.

机构信息

Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.

UK Public Health Rapid Support Team, London WC1E 7HT, UK.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2021 Jul 19;376(1829):20200266. doi: 10.1098/rstb.2020.0266. Epub 2021 May 31.

Abstract

As several countries gradually release social distancing measures, rapid detection of new localized COVID-19 hotspots and subsequent intervention will be key to avoiding large-scale resurgence of transmission. We introduce ASMODEE (automatic selection of models and outlier detection for epidemics), a new tool for detecting sudden changes in COVID-19 incidence. Our approach relies on automatically selecting the best (fitting or predicting) model from a range of user-defined time series models, excluding the most recent data points, to characterize the main trend in an incidence. We then derive prediction intervals and classify data points outside this interval as outliers, which provides an objective criterion for identifying departures from previous trends. We also provide a method for selecting the optimal breakpoints, used to define how many recent data points are to be excluded from the trend fitting procedure. The analysis of simulated COVID-19 outbreaks suggests ASMODEE compares favourably with a state-of-art outbreak-detection algorithm while being simpler and more flexible. As such, our method could be of wider use for infectious disease surveillance. We illustrate ASMODEE using publicly available data of National Health Service (NHS) Pathways reporting potential COVID-19 cases in England at a fine spatial scale, showing that the method would have enabled the early detection of the flare-ups in Leicester and Blackburn with Darwen, two to three weeks before their respective lockdown. ASMODEE is implemented in the free R package . This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.

摘要

随着几个国家逐渐放宽社交距离措施,快速检测新的局部 COVID-19 热点并随后进行干预将是避免传播大规模反弹的关键。我们引入了 ASMODEE(用于传染病的模型自动选择和异常值检测),这是一种用于检测 COVID-19 发病率突然变化的新工具。我们的方法依赖于自动从一系列用户定义的时间序列模型中选择最佳(拟合或预测)模型,排除最近的数据点,以描述发病率的主要趋势。然后,我们得出预测区间,并将超出该区间的数据点分类为异常值,这为识别与先前趋势的偏离提供了客观标准。我们还提供了一种选择最佳断点的方法,用于定义要从趋势拟合过程中排除多少个最近的数据点。对模拟 COVID-19 暴发的分析表明,ASMODEE 与最先进的暴发检测算法相比具有优势,同时更简单、更灵活。因此,我们的方法可以更广泛地用于传染病监测。我们使用英国国民保健署(NHS)途径报告英格兰精细空间尺度潜在 COVID-19 病例的公开数据说明了 ASMODEE,表明该方法将能够提前检测莱斯特和布莱克本与达文的疫情爆发,比各自的封锁提前两到三周。ASMODEE 是在免费的 R 包 中实现的。本文是“塑造英国 COVID-19 大流行早期应对的模型”主题特刊的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbed/8165581/6cbbbc45f1bd/rstb20200266f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验