Suppr超能文献

多元空间自回归模型的参数估计与假设检验

Estimation of parameters and hypothesis testing of multivariate spatial autoregressive model.

作者信息

Cahyoko Fajar Dwi

机构信息

Department of Statistics, faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia.

Demography and Civil Registration Study Program, Universitas Sebelas Maret, Surakarta 57126, Indonesia.

出版信息

MethodsX. 2025 Mar 28;14:103294. doi: 10.1016/j.mex.2025.103294. eCollection 2025 Jun.

Abstract

Spatial dependence plays a critical role in modeling multivariate response variables, particularly in fields such as epidemiology and environmental studies. However, existing spatial regression models, such as the Spatial Autoregressive (SAR) model, are designed for univariate responses and are insufficient when multiple response variables are influenced by spatial location. To address this gap, we introduce a Multivariate Spatial Autoregressive (MSAR) model. While previous research has focused primarily on parameter estimation for the proposed model, limited attention has been given to the statistical significance of these parameters. Moreover, existing estimation methods often rely on pseudo-distributions, which may not accurately reflect the underlying data characteristics. This study employs Maximum Likelihood Estimation (MLE), optimized using a concentrated log-likelihood approach, under the assumption of normally distributed data. To assess parameter significance, we apply both the Maximum Likelihood Ratio Test (MLRT) for joint hypotheses and the Wald Test for individual parameters. The findings confirm that the proposed model yields unbiased and consistent parameter estimates. Furthermore, the significance tests reveal key predictor variables associated with pneumonia and diarrhea cases among toddlers. The proposed model achieves a Root Mean Square Error of 5 and an R-squared value of 60 %, demonstrating its effectiveness in capturing spatial dependence in multivariate settings. The main contributions of this study include:•Development of a MSAR model estimated using MLE to capture spatial dependencies among multiple response variables.•Implementation of formal hypothesis testing procedures for model parameters using the Likelihood Ratio and Wald tests.•Application of the proposed model to spatial health data at the village level in Tuban District, East Java, Indonesia, focusing on health problems among children under five.

摘要

空间依赖性在多变量响应变量建模中起着关键作用,特别是在流行病学和环境研究等领域。然而,现有的空间回归模型,如空间自回归(SAR)模型,是为单变量响应设计的,当多个响应变量受空间位置影响时就显得不足。为了弥补这一差距,我们引入了多变量空间自回归(MSAR)模型。虽然先前的研究主要集中在该模型的参数估计上,但对这些参数的统计显著性关注较少。此外,现有的估计方法通常依赖伪分布,这可能无法准确反映潜在的数据特征。本研究在数据呈正态分布的假设下,采用通过集中对数似然方法优化的最大似然估计(MLE)。为了评估参数的显著性,我们对联合假设应用最大似然比检验(MLRT),对单个参数应用 Wald 检验。研究结果证实,所提出的模型产生无偏且一致的参数估计。此外,显著性检验揭示了与幼儿肺炎和腹泻病例相关的关键预测变量。所提出的模型实现了 5 的均方根误差和 60%的决定系数,证明了其在多变量环境中捕捉空间依赖性的有效性。本研究的主要贡献包括:

  • 开发一种使用 MLE 估计的 MSAR 模型,以捕捉多个响应变量之间的空间依赖性。

  • 使用似然比和 Wald 检验对模型参数实施正式的假设检验程序。

  • 将所提出的模型应用于印度尼西亚东爪哇省图班区村级的空间健康数据,重点关注五岁以下儿童的健康问题。

相似文献

1
Estimation of parameters and hypothesis testing of multivariate spatial autoregressive model.
MethodsX. 2025 Mar 28;14:103294. doi: 10.1016/j.mex.2025.103294. eCollection 2025 Jun.
2
Spatial clustering based on geographically weighted multivariate generalized gamma regression.
MethodsX. 2024 Aug 10;13:102903. doi: 10.1016/j.mex.2024.102903. eCollection 2024 Dec.
3
Variable Selection of Spatial Logistic Autoregressive Model with Linear Constraints.
Entropy (Basel). 2022 Nov 15;24(11):1660. doi: 10.3390/e24111660.
5
Explore poverty with statistical modeling: The bivariate polynomial binary logit regression (BPBLR).
MethodsX. 2024 Dec 15;14:103099. doi: 10.1016/j.mex.2024.103099. eCollection 2025 Jun.
9
Using a spatial autoregressive model with spatial autoregressive disturbances to investigate origin-destination trip flows.
PLoS One. 2024 Jun 26;19(6):e0305932. doi: 10.1371/journal.pone.0305932. eCollection 2024.

本文引用的文献

1
Spatial clustering based on geographically weighted multivariate generalized gamma regression.
MethodsX. 2024 Aug 10;13:102903. doi: 10.1016/j.mex.2024.102903. eCollection 2024 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验