Suppr超能文献

基于地理加权多元广义伽马回归的空间聚类

Spatial clustering based on geographically weighted multivariate generalized gamma regression.

作者信息

Yasin Hasbi, Choiruddin Achmad

机构信息

Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya 60111 Indonesia.

Department of Statistics, Universitas Diponegoro, Semarang 50275 Indonesia.

出版信息

MethodsX. 2024 Aug 10;13:102903. doi: 10.1016/j.mex.2024.102903. eCollection 2024 Dec.

Abstract

Geographically Weighted Regression (GWR) is one of the local statistical models that can capture the effects of spatial heterogeneity. This model can be used for both univariate and multivariate responses. However, it should be noted that GWR models require the assumption of error normality. To overcome this problem, we propose a GWR model for generalized gamma distributed responses that can capture the phenomenon of some special continuous distributions. The proposed model is known as Geographically Weighted Multivariate Generalized Gamma Regression (GWMGGR). Parameter estimation is performed using the Maximum Likelihood Estimation (MLE) method optimized with the Bernt-Hall-Hall-Haussman (BHHH) algorithm. To determine the significance of the spatial heterogeneity effect, a hypothesis test was conducted using the Maximum Likelihood Ratio Test (MLRT) approach. We made a spatial cluster based on the estimated model parameters for each response using the k-means clustering method to interpret the obtained results. Some highlights of the proposed method are:•A new model for GWR with multivariate generalized gamma distributed responses to overcome the assumption of normally distributed errors.•Goodness of fit test to test the spatial effects in GWMGGR model.•Spatial clustering of districts/cities in Central Java based on three dimensions of educational indicators.

摘要

地理加权回归(GWR)是一种能够捕捉空间异质性影响的局部统计模型。该模型可用于单变量和多变量响应。然而,需要注意的是,GWR模型需要误差正态性假设。为克服这一问题,我们提出了一种针对广义伽马分布响应的GWR模型,该模型能够捕捉某些特殊连续分布的现象。所提出的模型被称为地理加权多变量广义伽马回归(GWMGGR)。参数估计使用通过伯恩特 - 霍尔 - 霍尔 - 豪斯曼(BHHH)算法优化的最大似然估计(MLE)方法进行。为确定空间异质性效应的显著性,使用最大似然比检验(MLRT)方法进行了假设检验。我们使用k均值聚类方法基于每个响应的估计模型参数进行了空间聚类,以解释所得结果。所提方法的一些亮点包括:

  • 一种用于具有多变量广义伽马分布响应的GWR的新模型,以克服误差正态分布假设。

  • 拟合优度检验,用于检验GWMGGR模型中的空间效应。

  • 基于教育指标的三个维度对中爪哇省的地区/城市进行空间聚类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db6e/11372798/d9ef576da008/ga1.jpg

相似文献

1
Spatial clustering based on geographically weighted multivariate generalized gamma regression.
MethodsX. 2024 Aug 10;13:102903. doi: 10.1016/j.mex.2024.102903. eCollection 2024 Dec.
2
Geographically weighted bivariate zero inflated generalized Poisson regression model and its application.
Heliyon. 2021 Jul 8;7(7):e07491. doi: 10.1016/j.heliyon.2021.e07491. eCollection 2021 Jul.
4
Construction of a geographically weighted nonparametric regression model fit test.
MethodsX. 2024 Jan 2;12:102536. doi: 10.1016/j.mex.2023.102536. eCollection 2024 Jun.
5
Bayesian cluster geographically weighted regression for spatial heterogeneous data.
R Soc Open Sci. 2024 Jun 19;11(6):231780. doi: 10.1098/rsos.231780. eCollection 2024 Jun.
7
Exploring spatial nonstationary environmental effects on Yellow Perch distribution in Lake Erie.
PeerJ. 2019 Jul 25;7:e7350. doi: 10.7717/peerj.7350. eCollection 2019.
8
[Spatial distribution of carbon storage in natural secondary forest based on geographically weighted regression expansion model.].
Ying Yong Sheng Tai Xue Bao. 2021 Apr;32(4):1175-1183. doi: 10.13287/j.1001-9332.202104.002.
9
Global and Geographically and Temporally Weighted Regression Models for Modeling PM in Heilongjiang, China from 2015 to 2018.
Int J Environ Res Public Health. 2019 Dec 14;16(24):5107. doi: 10.3390/ijerph16245107.

引用本文的文献

2
Estimation of parameters and hypothesis testing of multivariate spatial autoregressive model.
MethodsX. 2025 Mar 28;14:103294. doi: 10.1016/j.mex.2025.103294. eCollection 2025 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验