Suppr超能文献

基于地理加权多元广义伽马回归的空间聚类

Spatial clustering based on geographically weighted multivariate generalized gamma regression.

作者信息

Yasin Hasbi, Choiruddin Achmad

机构信息

Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya 60111 Indonesia.

Department of Statistics, Universitas Diponegoro, Semarang 50275 Indonesia.

出版信息

MethodsX. 2024 Aug 10;13:102903. doi: 10.1016/j.mex.2024.102903. eCollection 2024 Dec.

Abstract

Geographically Weighted Regression (GWR) is one of the local statistical models that can capture the effects of spatial heterogeneity. This model can be used for both univariate and multivariate responses. However, it should be noted that GWR models require the assumption of error normality. To overcome this problem, we propose a GWR model for generalized gamma distributed responses that can capture the phenomenon of some special continuous distributions. The proposed model is known as Geographically Weighted Multivariate Generalized Gamma Regression (GWMGGR). Parameter estimation is performed using the Maximum Likelihood Estimation (MLE) method optimized with the Bernt-Hall-Hall-Haussman (BHHH) algorithm. To determine the significance of the spatial heterogeneity effect, a hypothesis test was conducted using the Maximum Likelihood Ratio Test (MLRT) approach. We made a spatial cluster based on the estimated model parameters for each response using the k-means clustering method to interpret the obtained results. Some highlights of the proposed method are:•A new model for GWR with multivariate generalized gamma distributed responses to overcome the assumption of normally distributed errors.•Goodness of fit test to test the spatial effects in GWMGGR model.•Spatial clustering of districts/cities in Central Java based on three dimensions of educational indicators.

摘要

地理加权回归(GWR)是一种能够捕捉空间异质性影响的局部统计模型。该模型可用于单变量和多变量响应。然而,需要注意的是,GWR模型需要误差正态性假设。为克服这一问题,我们提出了一种针对广义伽马分布响应的GWR模型,该模型能够捕捉某些特殊连续分布的现象。所提出的模型被称为地理加权多变量广义伽马回归(GWMGGR)。参数估计使用通过伯恩特 - 霍尔 - 霍尔 - 豪斯曼(BHHH)算法优化的最大似然估计(MLE)方法进行。为确定空间异质性效应的显著性,使用最大似然比检验(MLRT)方法进行了假设检验。我们使用k均值聚类方法基于每个响应的估计模型参数进行了空间聚类,以解释所得结果。所提方法的一些亮点包括:

  • 一种用于具有多变量广义伽马分布响应的GWR的新模型,以克服误差正态分布假设。

  • 拟合优度检验,用于检验GWMGGR模型中的空间效应。

  • 基于教育指标的三个维度对中爪哇省的地区/城市进行空间聚类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db6e/11372798/d9ef576da008/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验