Wright Carrie, Meng Qier, Breshock Michael R, Atta Lyla, Taub Margaret A, Jager Leah R, Muschelli John, Hicks Stephanie C
Biostatistics Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health.
Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health.
J Stat Data Sci Educ. 2024;32(4):331-344. doi: 10.1080/26939169.2024.2394541. Epub 2024 Sep 24.
With unprecedented and growing interest in data science education, there are limited educator materials that provide meaningful opportunities for learners to practice , as defined by Wild and Pfannkuch, with messy data addressing real-world challenges. As a solution, Nolan and Speed advocated for bringing applications to the forefront in undergraduate statistics curriculum with the use of in-depth to encourage and develop statistical thinking in the classroom. Limitations to this approach include the significant time investment required to develop a case study - namely, to select a motivating question and to create an illustrative data analysis - and the domain expertise needed. As a result, case studies based on realistic challenges, not toy examples, are scarce. To address this, we developed the Open Case Studies (opencasestudies.org) project, which offers a new statistical and data science education case study model. This educational resource provides self-contained, multimodal, peer-reviewed, and open-source guides (or case studies) from real-world examples for active experiences of complete data analyses. We developed an educator's guide describing how to most effectively use the case studies, how to modify and adapt components of the case studies in the classroom, and how to contribute new case studies (opencasestudies.org/OCS_Guide).
随着对数据科学教育的兴趣空前高涨且不断增长,按照怀尔德和普法恩库赫的定义,能够为学习者提供有意义的机会来处理杂乱数据以应对现实世界挑战的教学材料却很有限。作为一种解决方案,诺兰和斯皮德主张在本科统计学课程中把应用置于前沿,通过深入使用案例来鼓励并培养课堂上的统计思维。这种方法的局限性包括开发一个案例研究需要大量的时间投入——也就是说,要选择一个有启发性的问题并创建一个有说明性的数据分析——以及所需的领域专业知识。因此,基于现实挑战而非简单示例的案例研究很少见。为了解决这个问题,我们开发了开放案例研究项目(opencasestudies.org),它提供了一种新的统计和数据科学教育案例研究模式。这个教育资源提供了自成体系、多模态、经过同行评审且开源的指南(或案例研究),这些指南来自实际例子,用于完整数据分析的实践体验。我们编写了一份教师指南,描述如何最有效地使用案例研究、如何在课堂上修改和调整案例研究的各个部分,以及如何贡献新的案例研究(opencasestudies.org/OCS_Guide)。