通过特定时间列线图提高极低出生体重儿晚发性败血症死亡率的预测准确性。

Enhanced predictive accuracy of mortality in VLBW infants with late-onset sepsis through a time-specific nomogram.

作者信息

Yu Lun, Li Yanhong, Zuming Yang

机构信息

Suzhou Municipal Hospital, Suzhou, China.

Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China.

出版信息

Front Public Health. 2025 Apr 2;13:1548695. doi: 10.3389/fpubh.2025.1548695. eCollection 2025.

Abstract

OBJECTIVE

This study aims to develop and validate a nomogram-based scoring system to predict mortality in very low birth weight (VLBW) infants with late-onset sepsis (LOS). Timely risk stratification in this vulnerable population is critical for optimizing clinical outcomes.

METHODS

We conducted a retrospective analysis on 202 VLBW infants diagnosed with LOS between January 2018 and December 2022. Predictive models were created at three key time points: 0 h, 6 h, and 12 h post-sepsis onset, utilizing Least Absolute Shrinkage and Selection Operator (LASSO) regression for variable selection and multivariable logistic regression for model construction. Internal validation was performed with 1,000 bootstrap resamples to correct for potential overfitting. External validation was conducted on an independent cohort of 71 infants from January 2023 to March 2024. Model performance was assessed using Area Under the Curve (AUC), calibration plots, and decision curve analysis (DCA).

RESULTS

The models exhibited excellent discrimination with AUCs of 0.83, 0.92, and 0.94 at 0 h, 6 h, and 12 h, respectively, in the development cohort, and 0.95, 0.95, and 0.97 in the validation cohort. Calibration plots showed strong agreement between predicted and observed outcomes. The significant disparity in maternal COVID-19 infection rates between cohorts (1 vs. 89%) may have contributed to the enhanced predictive accuracy in the external cohort.

CONCLUSION

This dynamic, time-specific nomogram demonstrates high predictive accuracy and clinical utility for mortality in VLBW infants with LOS. The impact of maternal COVID-19 infection on neonatal outcomes offers a novel perspective for future research in sepsis prognostication.

摘要

目的

本研究旨在开发并验证一种基于列线图的评分系统,以预测极低出生体重(VLBW)且患有晚发性败血症(LOS)的婴儿的死亡率。对这一脆弱群体进行及时的风险分层对于优化临床结局至关重要。

方法

我们对2018年1月至2022年12月期间诊断为LOS的202例VLBW婴儿进行了回顾性分析。在败血症发作后的三个关键时间点(0小时、6小时和12小时)创建预测模型,利用最小绝对收缩和选择算子(LASSO)回归进行变量选择,并使用多变量逻辑回归进行模型构建。通过1000次自助重采样进行内部验证,以校正潜在的过度拟合。对2023年1月至2024年3月的71例独立队列婴儿进行外部验证。使用曲线下面积(AUC)、校准图和决策曲线分析(DCA)评估模型性能。

结果

在开发队列中,模型在0小时、6小时和12小时时的AUC分别为0.83、0.92和0.94,表现出出色的区分能力;在验证队列中,AUC分别为0.95、0.95和0.97。校准图显示预测结果与观察结果之间具有高度一致性。队列之间孕产妇新冠病毒感染率的显著差异(1%对89%)可能导致了外部队列中预测准确性的提高。

结论

这种动态的、特定时间的列线图对于VLBW且患有LOS的婴儿的死亡率具有较高的预测准确性和临床实用性。孕产妇新冠病毒感染对新生儿结局的影响为败血症预后的未来研究提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a61d/11999929/5023867d31ff/fpubh-13-1548695-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索