Suppr超能文献

基于综合风险因素的列线图预测脓毒症相关性脑病患者一年死亡率。

Comprehensive risk factor-based nomogram for predicting one-year mortality in patients with sepsis-associated encephalopathy.

机构信息

Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang Province, People's Republic of China.

Department of Critical Care Medicine, Hangzhou Geriatric Hospital, Hangzhou, Zhejiang Province, People's Republic of China.

出版信息

Sci Rep. 2024 Oct 14;14(1):23979. doi: 10.1038/s41598-024-74837-z.

Abstract

Sepsis-associated encephalopathy (SAE) is a frequent and severe complication in septic patients, characterized by diffuse brain dysfunction resulting from systemic inflammation. Accurate prediction of long-term mortality in these patients is critical for improving clinical outcomes and guiding treatment strategies. We conducted a retrospective cohort study using the MIMIC IV database to identify adult patients diagnosed with SAE. Patients were randomly divided into a training set (70%) and a validation set (30%). Least absolute shrinkage and selection operator regression and multivariate logistic regression were employed to identify significant predictors of 1-year mortality, which were then used to develop a prognostic nomogram. The model's discrimination, calibration, and clinical utility were assessed using the area under the receiver operating characteristic curve (AUC), calibration plots, and decision curve analysis, respectively. A total of 3,882 SAE patients were included in the analysis. The nomogram demonstrated strong predictive performance with AUCs of 0.881 (95% CI: 0.865, 0.896) in the training set and 0.859 (95% CI: 0.830, 0.888) in the validation set. Calibration plots indicated good agreement between predicted and observed 1-year mortality rates. The decision curve analysis showed that the nomogram provided greater net benefit across a range of threshold probabilities compared to traditional scoring systems such as Glasgow Coma Scale and Sequential Organ Failure Assessment. Our study presents a robust and clinically applicable nomogram for predicting 1-year mortality in SAE patients. This tool offers superior predictive performance compared to existing severity scoring systems and has significant potential to enhance clinical decision-making and patient management in critical care settings.

摘要

脓毒症相关性脑病(SAE)是脓毒症患者常见且严重的并发症,其特征是全身炎症引起的弥漫性脑功能障碍。准确预测这些患者的长期死亡率对于改善临床结局和指导治疗策略至关重要。我们使用 MIMIC-IV 数据库进行了一项回顾性队列研究,以确定诊断为 SAE 的成年患者。患者被随机分为训练集(70%)和验证集(30%)。采用最小绝对收缩和选择算子回归和多变量逻辑回归来识别 1 年死亡率的显著预测因子,然后使用这些预测因子开发预后列线图。使用接受者操作特征曲线下面积(AUC)、校准图和决策曲线分析分别评估模型的判别能力、校准和临床实用性。共纳入 3882 例 SAE 患者进行分析。该列线图在训练集和验证集中具有很强的预测性能,AUC 分别为 0.881(95%CI:0.865,0.896)和 0.859(95%CI:0.830,0.888)。校准图表明预测和观察到的 1 年死亡率之间具有良好的一致性。决策曲线分析表明,与格拉斯哥昏迷量表和序贯器官衰竭评估等传统评分系统相比,该列线图在一系列阈值概率下提供了更大的净获益。我们的研究提出了一种用于预测 SAE 患者 1 年死亡率的强大且临床适用的列线图。与现有的严重程度评分系统相比,该工具具有优越的预测性能,并且在重症监护环境中具有显著改善临床决策和患者管理的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/172f/11473772/f53d0f5b3bc6/41598_2024_74837_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验