Farley Ryan, Zhou Shan, Collier Sonya, Jiang Wenqing, Onasch Timothy B, Shilling John E, Kleinman Lawrence, Sedlacek Iii Arthur J, Zhang Qi
Department of Environmental Toxicology, University of California, 1 Shields Avenue, Davis, California 95616, United States.
Agricultural and Environmental Chemistry Graduate Program, University of California, 1 Shields Avenue, Davis, California 95616, United States.
ACS EST Air. 2025 Mar 28;2(4):677-691. doi: 10.1021/acsestair.5c00002. eCollection 2025 Apr 11.
The atmospheric processing of biomass burning organic aerosol (BBOA) and its implications for tropospheric aerosol physicochemical properties remain uncertain. To address this gap, we investigate the chemical transformation of BBOA from wildfire events in the western U.S., using data from aerosol mass spectrometers aboard the DOE G-1 aircraft and at the Mt. Bachelor Observatory (∼2800 m a.s.l.) during the summers of 2013 and 2019. This study captures dynamic changes in submicron particulate matter (PM) concentrations and chemical profiles within wildfire plumes that span a broad range of atmospheric ages, from fresh emissions (<30 min) to plumes transported for several days. As plumes age, the oxidation state of organic aerosols (OA) increases, accompanied by the formation of secondary aerosol components such as phenolic secondary OA (SOA) species, carboxylic acids, and potassium sulfate. Early plume evolution is marked by the evaporation of semivolatile components and the formation of alcohol and peroxide functional groups, while extended aging produces more oxidized species, including carboxylic acids and carbonyl compounds. Normalized excess mixing ratios (NEMRs) of OA to CO demonstrate a complex interplay between evaporation, SOA formation, and oxidative loss. Using positive matrix factorization (PMF), we identify distinct BBOA types representing various stages of atmospheric processing and assess the contributions of primary BBOA and secondary BBOA formed through atmospheric reactions. These findings shed light on the intricate mechanisms governing the evolution of BBOA characteristics within wildfire plumes, providing critical insights to improve atmospheric modeling of BBOA and better assess the environmental and climatic impacts of wildfire emissions.
生物质燃烧有机气溶胶(BBOA)的大气处理过程及其对对流层气溶胶物理化学性质的影响仍不明确。为填补这一空白,我们利用美国能源部G - 1飞机以及位于海拔约2800米的贝克尔山天文台的气溶胶质谱仪在2013年和2019年夏季获取的数据,研究了美国西部野火事件中BBOA的化学转化。本研究捕捉了野火羽流中亚微米颗粒物(PM)浓度和化学组成的动态变化,这些羽流涵盖了从新鲜排放(<30分钟)到传输数天的广泛大气年龄范围。随着羽流老化,有机气溶胶(OA)的氧化态增加,同时伴随着酚类二次有机气溶胶(SOA)物种、羧酸和硫酸钾等二次气溶胶成分的形成。羽流早期演化的特征是半挥发性成分的蒸发以及醇类和过氧化物官能团的形成,而长时间老化会产生更多氧化物种,包括羧酸和羰基化合物。OA与CO的归一化过剩混合比(NEMRs)表明蒸发、SOA形成和氧化损失之间存在复杂的相互作用。利用正定矩阵因子分解法(PMF),我们识别出代表大气处理不同阶段的不同BBOA类型,并评估了通过大气反应形成的一次BBOA和二次BBOA的贡献。这些发现揭示了控制野火羽流中BBOA特征演变的复杂机制,为改进BBOA的大气模型以及更好地评估野火排放对环境和气候的影响提供了关键见解。