Cai Wenting, Zhang Mengmeng, Echegoyen Luis, Lu Xing
School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX 75080, United States.
Fundam Res. 2023 Dec 29;5(2):767-781. doi: 10.1016/j.fmre.2023.12.004. eCollection 2025 Mar.
Fullerenes are a collection of closed polycyclic polymers consisting exclusively of carbon atoms. Recent remarkable advancements in the fabrication of metal-fullerene nanocatalysts and polymeric fullerene layers have significantly expanded the potential applications of fullerenes in various domains, including electrocatalysis, transistors, energy storage devices, and superconductors. Notably, the interior of fullerenes provides an optimal environment for stabilizing a diverse range of metal ions or clusters through electron transfer, resulting in the formation of a novel class of hybrid molecules referred to as endohedral metallofullerenes (EMFs). The utilization of advanced synthetic methodologies and the progress achieved in separation techniques have played a pivotal role in expanding the diversity of the encapsulated metal constituents, consequently leading to distinctive structural, electronic, and physicochemical properties of novel EMFs that surpass conventional ones. Intriguing phenomena, including regioselective dimerization between EMFs, direct metal-metal bonding, and non-classical cage preferences, have been unveiled, offering valuable insights into the coordination interactions between metallic species and carbon. Of particular importance, the recent achievements in the comprehensive characterization of EMFs based on transition metals and actinide metals have generated a particular interest in the exploration of new metal clusters possessing long-desired bonding features within the realm of coordination chemistry. These clusters exhibit a remarkable affinity for coordinating with non-metal atoms such as carbon, nitrogen, oxygen, and sulfur, thus making them highly intriguing subjects of systematic investigations focusing on their electronic structures and physicochemical properties, ultimately leading to a deeper comprehension of their unparalleled bonding characteristics. Moreover, the versatility conferred by the encapsulated species endows EMFs with multifunctional properties, thereby unveiling potential applications in various fields including biomedicine, single-molecule magnets, and electronic devices.
富勒烯是仅由碳原子组成的封闭多环聚合物的集合。最近在金属 - 富勒烯纳米催化剂和聚合物富勒烯层的制备方面取得的显著进展,极大地扩展了富勒烯在包括电催化、晶体管、储能装置和超导体在内的各个领域的潜在应用。值得注意的是,富勒烯的内部为通过电子转移稳定各种金属离子或团簇提供了理想环境,从而形成了一类新型的杂化分子,称为内嵌金属富勒烯(EMF)。先进合成方法的应用以及分离技术取得的进展,在扩大被封装金属成分的多样性方面发挥了关键作用,进而导致新型EMF具有超越传统EMF的独特结构、电子和物理化学性质。已经揭示了一些有趣的现象,包括EMF之间的区域选择性二聚化、直接的金属 - 金属键合以及非经典的笼偏好,这为金属物种与碳之间的配位相互作用提供了有价值的见解。特别重要的是,最近基于过渡金属和锕系金属对EMF进行全面表征所取得的成果,引发了人们对探索配位化学领域中具有长期期望的键合特征的新金属簇的特别兴趣。这些簇对与碳、氮、氧和硫等非金属原子配位表现出显著的亲和力,因此使其成为专注于其电子结构和物理化学性质的系统研究的极具吸引力的对象,最终有助于更深入地理解其无与伦比的键合特性。此外,被封装物种赋予的多功能性使EMF具有多种功能特性,从而揭示了其在生物医学、单分子磁体和电子器件等各个领域的潜在应用。