Suppr超能文献

被困在C富勒烯笼中的带电荷的双原子三键U≡N物种。

A charged diatomic triple-bonded U≡N species trapped in C fullerene cages.

作者信息

Meng Qingyu, Abella Laura, Yao Yang-Rong, Sergentu Dumitru-Claudiu, Yang Wei, Liu Xinye, Zhuang Jiaxin, Echegoyen Luis, Autschbach Jochen, Chen Ning

机构信息

College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.

Department of Chemistry, University at Buffalo, State University of New York. Natural Sciences Complex, Buffalo, NY, 14260-3000, USA.

出版信息

Nat Commun. 2022 Nov 23;13(1):7192. doi: 10.1038/s41467-022-34651-5.

Abstract

Actinide diatomic molecules are ideal models to study elusive actinide multiple bonds, but most of these diatomic molecules have so far only been studied in solid inert gas matrices. Herein, we report a charged U≡N diatomic species captured in fullerene cages and stabilized by the U-fullerene coordination interaction. Two diatomic clusterfullerenes, viz. UN@C(6)-C and UN@C(5)-C, were successfully synthesized and characterized. Crystallographic analysis reveals U-N bond lengths of 1.760(7) and 1.760(20) Å in UN@C(6)-C and UN@C(5)-C. Moreover, U≡N was found to be immobilized and coordinated to the fullerene cages at 100 K but it rotates inside the cage at 273 K. Quantum-chemical calculations show a (UN)@(C) electronic structure with formal +5 oxidation state (f) of U and unambiguously demonstrate the presence of a U≡N bond in the clusterfullerenes. This study constitutes an approach to stabilize fundamentally important actinide multiply bonded species.

摘要

锕系双原子分子是研究难以捉摸的锕系多重键的理想模型,但到目前为止,这些双原子分子大多仅在固体惰性气体基质中进行过研究。在此,我们报告了一种捕获在富勒烯笼中并通过铀 - 富勒烯配位相互作用得以稳定的带电荷的U≡N双原子物种。成功合成并表征了两种双原子团簇富勒烯,即UN@C(6)-C和UN@C(5)-C。晶体学分析表明,在UN@C(6)-C和UN@C(5)-C中,U - N键长分别为1.760(7) Å和1.760(20) Å。此外,发现U≡N在100 K时固定并配位到富勒烯笼上,但在273 K时在笼内旋转。量子化学计算表明,(UN)@(C)的电子结构中U的形式氧化态为 +5 (f),并明确证明了团簇富勒烯中存在U≡N键。这项研究构成了一种稳定具有根本重要性的锕系多重键物种的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b699/9684569/b7ecd19acdfb/41467_2022_34651_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验