Fernandes Kenya E, Johnston Caitlin L, Williams Brayden C, Carter Dee A, Sunde Margaret
School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia.
Sydney Institute for Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia.
Microbiol Spectr. 2025 Jun 3;13(6):e0068625. doi: 10.1128/spectrum.00686-25. Epub 2025 Apr 15.
Amphotericin B (AMB), a potent and broad-spectrum antifungal agent, faces solubility and toxicity challenges in clinical use. In this study, we explored the ability of DewY and EAS class I fungal hydrophobin proteins with unique amphipathic properties and self-assembly capabilities, to stabilize AMB in solution. UV-visible spectroscopy confirmed the ability of hydrophobin proteins to stabilize the monomeric state of AMB in aqueous solution for up to 48 h. Further assays revealed that this effect was not exclusive to hydrophobins, however, as non-hydrophobin proteins provided similar stabilizing effects. AMB-protein combinations exhibited enhanced efficacy against diverse clinically relevant fungal pathogens, with 4- to 32-fold reductions in the effective dosage compared to AMB alone. Microscopic analyses found fungal cells treated with AMB alone and in combination with proteins had identical morphological changes, suggesting that protein interactions do not alter the mode of action of AMB. Instead, our results indicate that the monomeric state of AMB is stabilized in aqueous solution by non-specific interactions with hydrophobic areas on proteins. We suggest that this protein-mediated enhancement of solubility could reduce the required dose of AMB, providing a basis for optimizing AMB-based antifungal therapies.IMPORTANCEFungal infections are a growing global health concern, yet effective antifungal treatments remain limited by toxicity and poor solubility. AMB, a potent broad-spectrum antifungal, is highly effective but suffers from severe side effects and formulation challenges. Our study demonstrates that proteins, including fungal hydrophobins, can stabilize AMB in its monomeric form, significantly enhancing its solubility and efficacy against a range of fungal pathogens. These findings suggest that protein-mediated stabilization could enhance the effectiveness of AMB by reducing the required dosage and potentially lowering its toxic side effects. This approach offers a promising strategy for optimizing AMB therapies and improving treatment options, especially in resource-limited settings where fungal infections impose a significant health burden.
两性霉素B(AMB)是一种强效的广谱抗真菌剂,在临床应用中面临着溶解性和毒性方面的挑战。在本研究中,我们探索了具有独特两亲性和自组装能力的DewY和EAS I类真菌疏水蛋白在溶液中稳定AMB的能力。紫外可见光谱证实,疏水蛋白能够在水溶液中稳定AMB的单体状态长达48小时。然而,进一步的分析表明,这种效果并非疏水蛋白所独有,因为非疏水蛋白也能提供类似的稳定作用。AMB与蛋白质的组合对多种临床相关真菌病原体表现出增强的疗效,与单独使用AMB相比,有效剂量降低了4至32倍。显微镜分析发现,单独用AMB处理以及与蛋白质联合处理的真菌细胞具有相同的形态变化,这表明蛋白质相互作用不会改变AMB的作用方式。相反,我们的结果表明,AMB的单体状态通过与蛋白质上疏水区域的非特异性相互作用在水溶液中得以稳定。我们认为,这种蛋白质介导的溶解性增强可以降低AMB的所需剂量,为优化基于AMB的抗真菌治疗提供依据。
真菌感染是一个日益严重的全球健康问题,但有效的抗真菌治疗仍然受到毒性和溶解性差的限制。AMB是一种强效的广谱抗真菌剂,虽然高效,但存在严重的副作用和制剂方面的挑战。我们的研究表明,包括真菌疏水蛋白在内的蛋白质可以稳定AMB的单体形式,显著提高其对一系列真菌病原体的溶解性和疗效。这些发现表明,蛋白质介导的稳定作用可以通过降低所需剂量并潜在降低其毒副作用来提高AMB的有效性。这种方法为优化AMB治疗和改善治疗选择提供了一种有前景的策略,特别是在真菌感染带来重大健康负担的资源有限环境中。