Suppr超能文献

多功能金纳米酶工程化两性霉素 B 增强抗真菌感染治疗。

Multifunctional Gold Nanozyme-Engineered Amphotericin B for Enhanced Antifungal Infection Therapy.

机构信息

Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.

State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.

出版信息

Small. 2024 Aug;20(32):e2312253. doi: 10.1002/smll.202312253. Epub 2024 Mar 19.

Abstract

Chronic wounds of significant severity and acute injuries are highly vulnerable to fungal infections, drastically impeding the expected wound healing trajectory. The clinical use of antifungal therapeutic drug is hampered by poor solubility, high toxicity and adverse reactions, thereby necessitating the urgent development of novel antifungal therapy strategy. Herein, this study proposes a new strategy to enhance the bioactivity of small-molecule antifungal drugs based on multifunctional metal nanozyme engineering, using amphotericin B (AmB) as an example. AmB-decorated gold nanoparticles (AmB@AuNPs) are synthesized by a facile one-pot reaction strategy, and the AmB@AuNPs exhibit superior peroxidase (POD)-like enzyme activity, with maximal reaction rates (V) 3.4 times higher than that of AuNPs for the catalytic reaction of HO. Importantly, the enzyme-like activity of AuNPs significantly enhanced the antifungal properties of AmB, and the minimum inhibitory concentrations of AmB@AuNPs against Candida albicans (C. albicans) and Saccharomyces cerevisiae (S. cerevisiae) W303 are reduced by 1.6-fold and 50-fold, respectively, as compared with AmB alone. Concurrent in vivo studies conducted on fungal-infected wounds in mice underscored the fundamentally superior antifungal ability and biosafety of AmB@AuNPs. The proposed strategy of engineering antifungal drugs with nanozymes has great potential for enhanced therapy of fungal infections and related diseases.

摘要

严重程度和急性损伤的慢性伤口极易受到真菌感染,极大地阻碍了预期的伤口愈合轨迹。抗真菌治疗药物的临床应用受到溶解度差、毒性高和不良反应的阻碍,因此迫切需要开发新的抗真菌治疗策略。本研究提出了一种基于多功能金属纳米酶工程增强小分子抗真菌药物生物活性的新策略,以两性霉素 B (AmB) 为例。通过简便的一锅反应策略合成了 AmB 修饰的金纳米颗粒(AmB@AuNPs),并且 AmB@AuNPs 表现出优异的过氧化物酶(POD)样酶活性,其对 HO 的催化反应的最大反应速率(V)比 AuNPs 高 3.4 倍。重要的是,纳米酶样活性显著增强了 AmB 的抗真菌性能,与单独的 AmB 相比,AmB@AuNPs 对白色念珠菌(C. albicans)和酿酒酵母(S. cerevisiae)W303 的最小抑菌浓度分别降低了 1.6 倍和 50 倍。在感染真菌的小鼠伤口的体内研究中,AmB@AuNPs 的卓越抗真菌能力和生物安全性得到了充分证明。用纳米酶工程化抗真菌药物的策略具有增强真菌感染和相关疾病治疗的巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验