Suppr超能文献

用于挖掘单细胞数据中食管鳞状细胞癌新抗原预后模型的101种机器学习算法

101 Machine Learning Algorithms for Mining Esophageal Squamous Cell Carcinoma Neoantigen Prognostic Models in Single-Cell Data.

作者信息

Sun Yingjie, Tang Yuheng, Qi Qi, Pang Jianyu, Chen Yongzhi, Wang Hui, Liang Jiaxiang, Tang Wenru

机构信息

Laboratory of Molecular Genetics of Aging & Tumor, Medicine School, Kunming University of Science and Technology, No. 727, Jingming South Road, Kunming 650500, China.

出版信息

Int J Mol Sci. 2025 Apr 4;26(7):3373. doi: 10.3390/ijms26073373.

Abstract

Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignant tumors in the digestive tract, characterized by a high recurrence rate and inadequate immunotherapy options. We analyzed mutation data of ESCC from public databases and employed 10 machine learning algorithms to generate 101 algorithm combinations. Based on the optimal range determined by the concordance index, we randomly selected one combination from the best-performing algorithms to construct a prognostic model consisting of five genes (, , , , and ). By validating the correlation between the prognostic model and antigen-presenting cells (APCs), we revealed the antigen-presentation efficacy of the model. Through the analysis of immune infiltration in ESCC, we uncovered the mechanisms of immune evasion associated with the disease. In addition, we examined the potential impact of the five prognostic genes on ESCC progression. Based on these insights, we identified anti-tumor small-molecule compounds targeting these prognostic genes. This study primarily simulates the tumor microenvironment (TME) and antigen presentation processes in ESCC patients, predicting the role of the neoantigen-based prognostic model in ESCC patients and their potential responses to immunotherapy. These results suggest a potential approach for identifying therapeutic targets in ESCC, which may contribute to the development of more effective treatment strategies.

摘要

食管鳞状细胞癌(ESCC)是消化道中侵袭性最强的恶性肿瘤之一,其特点是复发率高且免疫治疗选择有限。我们分析了来自公共数据库的ESCC突变数据,并采用10种机器学习算法生成101种算法组合。根据一致性指数确定的最佳范围,我们从表现最佳的算法中随机选择一种组合,构建了一个由五个基因(、、、和)组成的预后模型。通过验证预后模型与抗原呈递细胞(APC)之间的相关性,我们揭示了该模型的抗原呈递效能。通过对ESCC免疫浸润的分析,我们发现了与该疾病相关的免疫逃逸机制。此外,我们研究了这五个预后基因对ESCC进展的潜在影响。基于这些见解,我们确定了靶向这些预后基因的抗肿瘤小分子化合物。本研究主要模拟了ESCC患者的肿瘤微环境(TME)和抗原呈递过程,预测了基于新抗原的预后模型在ESCC患者中的作用及其对免疫治疗的潜在反应。这些结果提示了一种在ESCC中识别治疗靶点的潜在方法,这可能有助于开发更有效的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ace/11989522/6205c80c68be/ijms-26-03373-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验