文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

综合多组学分析和机器学习在一个大型多中心胃癌队列中开发了一种基于线粒体功能的预后模型。

Integrated multi-omics analysis and machine learning developed a prognostic model based on mitochondrial function in a large multicenter cohort for Gastric Cancer.

作者信息

Ma Yimeng, Jin Jingjing, Xue Zixuan, Zhao Jungang, Cai Weiyang, Zhang Wanli

机构信息

Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.

Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China.

出版信息

J Transl Med. 2024 Apr 23;22(1):381. doi: 10.1186/s12967-024-05109-7.


DOI:10.1186/s12967-024-05109-7
PMID:38654380
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11040813/
Abstract

BACKGROUND: Gastric cancer (GC) is a common and aggressive type of cancer worldwide. Despite recent advancements in its treatment, the prognosis for patients with GC remains poor. Understanding the mechanisms of cell death in GC, particularly those related to mitochondrial function, is crucial for its development and progression. However, more research is needed to investigate the significance of the interaction between mitochondrial function and GC cell death. METHODS: We employed a robust computational framework to investigate the role of mitochondria-associated proteins in the progression of GC in a cohort of 1,199 GC patients. Ten machine learning algorithms were utilized and combined into 101 unique combinations. Ultimately, we developed a Mitochondrial-related-Score (MitoScore) using the machine learning model that exhibited the best performance. We observed the upregulation of LEMT2 and further explored its function in tumor progression. Mitochondrial functions were assessed by measuring mitochondrial ATP, mitochondrial membrane potential, and levels of lactate, pyruvate, and glucose. RESULTS: MitoScore showed significant correlations with GC immune and metabolic functions. The higher MitoScore subgroup exhibited enriched metabolic pathways and higher immune activity. Overexpression of LETM2 (leucine zipper and EF-hand containing transmembrane protein 2) significantly enhanced tumor proliferation and metastasis. LETM2 plays a role in promoting GC cell proliferation by activating the mTOR pathway, maintaining mitochondrial homeostasis, and promoting glycolysis. CONCLUSION: The powerful machine learning framework highlights the significant potential of MitoScore in providing valuable insights and accurate assessments for individuals with GC. This study also enhances our understanding of LETM2 as an oncogene signature in GC. LETM2 may promote tumor progression by maintaining mitochondrial health and activating glycolysis, offering potential targets for diagnosis, treatment, and prognosis of GC.

摘要

背景:胃癌(GC)是全球常见且侵袭性强的癌症类型。尽管其治疗最近取得了进展,但胃癌患者的预后仍然很差。了解胃癌细胞死亡机制,特别是与线粒体功能相关的机制,对其发生和发展至关重要。然而,需要更多研究来探讨线粒体功能与胃癌细胞死亡之间相互作用的意义。 方法:我们采用了一个强大的计算框架,在1199例胃癌患者队列中研究线粒体相关蛋白在胃癌进展中的作用。使用了十种机器学习算法并将其组合成101种独特组合。最终,我们使用表现最佳的机器学习模型开发了线粒体相关评分(MitoScore)。我们观察到LETM2上调,并进一步探索了其在肿瘤进展中的功能。通过测量线粒体ATP、线粒体膜电位以及乳酸、丙酮酸和葡萄糖水平来评估线粒体功能。 结果:MitoScore与胃癌免疫和代谢功能显著相关。MitoScore较高的亚组表现出丰富的代谢途径和更高的免疫活性。LETM2(含亮氨酸拉链和EF手结构的跨膜蛋白2)的过表达显著增强了肿瘤增殖和转移。LETM2通过激活mTOR通路、维持线粒体稳态和促进糖酵解在促进胃癌细胞增殖中发挥作用。 结论:强大的机器学习框架突出了MitoScore在为胃癌患者提供有价值见解和准确评估方面的巨大潜力。本研究还增强了我们对LETM2作为胃癌癌基因特征的理解。LETM2可能通过维持线粒体健康和激活糖酵解促进肿瘤进展,为胃癌的诊断、治疗和预后提供潜在靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e9/11040813/b69436a62d6e/12967_2024_5109_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e9/11040813/78e883ed475b/12967_2024_5109_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e9/11040813/23f94d1b4425/12967_2024_5109_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e9/11040813/3b24a8313897/12967_2024_5109_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e9/11040813/f037b70ae5cb/12967_2024_5109_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e9/11040813/a73835986ffc/12967_2024_5109_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e9/11040813/8b9372bb66ef/12967_2024_5109_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e9/11040813/da5256984377/12967_2024_5109_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e9/11040813/b69436a62d6e/12967_2024_5109_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e9/11040813/78e883ed475b/12967_2024_5109_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e9/11040813/23f94d1b4425/12967_2024_5109_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e9/11040813/3b24a8313897/12967_2024_5109_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e9/11040813/f037b70ae5cb/12967_2024_5109_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e9/11040813/a73835986ffc/12967_2024_5109_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e9/11040813/8b9372bb66ef/12967_2024_5109_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e9/11040813/da5256984377/12967_2024_5109_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e9/11040813/b69436a62d6e/12967_2024_5109_Fig8_HTML.jpg

相似文献

[1]
Integrated multi-omics analysis and machine learning developed a prognostic model based on mitochondrial function in a large multicenter cohort for Gastric Cancer.

J Transl Med. 2024-4-23

[2]
Multi-omics features of immunogenic cell death in gastric cancer identified by combining single-cell sequencing analysis and machine learning.

Sci Rep. 2024-9-18

[3]
Multiomics integration and machine learning reveal prognostic programmed cell death signatures in gastric cancer.

Sci Rep. 2024-12-28

[4]
Integrated machine learning survival framework develops a prognostic model based on inter-crosstalk definition of mitochondrial function and cell death patterns in a large multicenter cohort for lower-grade glioma.

J Transl Med. 2023-9-2

[5]
Integrating multi-omics and machine learning survival frameworks to build a prognostic model based on immune function and cell death patterns in a lung adenocarcinoma cohort.

Front Immunol. 2024

[6]
Comprehensive analysis of glycometabolism-related genes reveals PLOD2 as a prognostic biomarker and therapeutic target in gastric cancer.

BMC Gastroenterol. 2025-4-15

[7]
Identification of a Tumor Microenvironment-relevant Gene set-based Prognostic Signature and Related Therapy Targets in Gastric Cancer.

Theranostics. 2020

[8]
Utilizing machine learning to integrate single-cell and bulk RNA sequencing data for constructing and validating a novel cell adhesion molecules related prognostic model in gastric cancer.

Comput Biol Med. 2024-9

[9]
A comprehensive analysis of molecular characteristics of hot and cold tumor of gastric cancer.

Cancer Immunol Immunother. 2025-2-4

[10]
Machine learning-random forest model was used to construct gene signature associated with cuproptosis to predict the prognosis of gastric cancer.

Sci Rep. 2025-2-4

引用本文的文献

[1]
Revolutionizing gastroenterology and hepatology with artificial intelligence: From precision diagnosis to equitable healthcare through interdisciplinary practice.

World J Gastroenterol. 2025-6-28

[2]
The Solute Carrier Superfamily as Therapeutic Targets in Pancreatic Ductal Adenocarcinoma.

Genes (Basel). 2025-4-18

[3]
101 Machine Learning Algorithms for Mining Esophageal Squamous Cell Carcinoma Neoantigen Prognostic Models in Single-Cell Data.

Int J Mol Sci. 2025-4-4

[4]
Integrating multiomics analysis and machine learning to refine the molecular subtyping and prognostic analysis of stomach adenocarcinoma.

Sci Rep. 2025-1-30

[5]
Survival Impacts of Mitochondrial Status in Esophageal Squamous Cell Carcinoma Patients.

Ann Surg Oncol. 2025-3

本文引用的文献

[1]
Loss of NDUFS1 promotes gastric cancer progression by activating the mitochondrial ROS-HIF1α-FBLN5 signaling pathway.

Br J Cancer. 2023-10

[2]
AAZ2 induces mitochondrial-dependent apoptosis by targeting PDK1 in gastric cancer.

J Zhejiang Univ Sci B. 2023-3-15

[3]
Mechanisms driving the immunoregulatory function of cancer cells.

Nat Rev Cancer. 2023-4

[4]
A LETM2-Regulated PI3K-Akt Signaling Axis Reveals a Prognostic and Therapeutic Target in Pancreatic Cancer.

Cancers (Basel). 2022-9-28

[5]
Development and validation of a novel endoplasmic reticulum stress-related lncRNA prognostic signature and candidate drugs in breast cancer.

Front Genet. 2022-8-25

[6]
Emerging role of LETM1/GRP78 axis in lung cancer.

Cell Death Dis. 2022-6-10

[7]
Approach to Resectable Gastric Cancer: Evolving Paradigm of Neoadjuvant and Adjuvant Treatment.

Curr Treat Options Oncol. 2022-7

[8]
Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer.

Nat Commun. 2022-2-10

[9]
Metabolic targeting of cancer by a ubiquinone uncompetitive inhibitor of mitochondrial complex I.

Cell Chem Biol. 2022-3-17

[10]
Using machine learning approaches for multi-omics data analysis: A review.

Biotechnol Adv. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索