Wen Xingxing, Prezhdo Oleg V, Xu Lai
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China.
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
J Am Chem Soc. 2025 Apr 30;147(17):14647-14658. doi: 10.1021/jacs.5c02696. Epub 2025 Apr 17.
The electrocatalytic reduction of nitric oxide (NO) to ammonia (NH) represents an attractive alternative for valorizing waste NO streams (NORR). However, discovering efficient catalysts for NO-to-NH conversion remains challenging. We have designed metal-intercalated twisted graphene-BN heterostructures, in which metal atoms act as electron-transfer bridges. The twisted configuration facilitates cross-interface charge transfer, redistributing electrons from the graphene-metal interface to the metal-BN interface and BN surface. This electronic modulation enables boron atom adjacent to the metal center in BN to serve as active sites, promoting strong chemisorption and enhanced activation of NO. After high-throughput screening of the stability and NO capture ability of various transition metal-intercalated twisted heterostructures, we have investigated systematically the NORR pathways across 30 candidates. The results show that the rBN-Ti-Gθ and rBN-V-Gθ heterostructures exhibit exceptional NO-to-NH catalytic performance under optimized twisting conditions. Additionally, using sure independence screening and sparsifying operator (SISSO) for model training, we propose a descriptor and establish a relationship between the twist angle and catalytic activity. This study bridges the gap in applying twisted heterostructures to NORR electrocatalysis and provides new insights and strategies for designing high-performance NORR catalysts.
将一氧化氮(NO)电催化还原为氨(NH₃)是一种处理废气NO流(NORR)的有吸引力的替代方法。然而,发现用于NO转化为NH₃的高效催化剂仍然具有挑战性。我们设计了金属插层的扭曲石墨烯 - BN异质结构,其中金属原子充当电子转移桥。扭曲结构促进跨界面电荷转移,将电子从石墨烯 - 金属界面重新分布到金属 - BN界面和BN表面。这种电子调制使BN中与金属中心相邻的硼原子充当活性位点,促进NO的强化学吸附和增强活化。在对各种过渡金属插层的扭曲异质结构的稳定性和NO捕获能力进行高通量筛选后,我们系统地研究了30种候选物的NORR途径。结果表明,rBN - Ti - Gθ和rBN - V - Gθ异质结构在优化的扭曲条件下表现出优异的NO到NH₃的催化性能。此外,使用确定独立筛选和稀疏化算子(SISSO)进行模型训练,我们提出了一个描述符,并建立了扭曲角度与催化活性之间的关系。这项研究弥合了将扭曲异质结构应用于NORR电催化的差距,并为设计高性能NORR催化剂提供了新的见解和策略。