Zeng Hui, Yoshioka Satoru, Wang Weimin, Han Zhongyuan, Ivanov Ivan G, Liang Hongwei, Darakchieva Vanya, Sun Jianwu
Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden.
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
J Am Chem Soc. 2025 Apr 30;147(17):14815-14823. doi: 10.1021/jacs.5c04005. Epub 2025 Apr 17.
Interface engineering is crucial for enhancing the efficiency of semiconductor-based solar energy devices. In this work, we report a novel dual-interface engineering strategy by designing a Ni(OH)/CoO/3C-SiC photoanode that achieves remarkable enhancements in photoelectrochemical (PEC) water splitting performance. The optimized photoanode delivers a photocurrent density of 1.68 mA cm at 1.23 V vs the reversible hydrogen electrode (RHE), representing an 8-fold increase compared to pristine 3C-SiC, along with excellent operational stability. In this architecture, CoO serves as a highly efficient hole-extraction layer and forms a p-n junction with 3C-SiC, enhancing the separation of photogenerated electron-hole pairs. At the Ni(OH)/CoO interface, the formation of Ni-O-Co bonds facilitates rapid charge transfer and accelerates oxygen evolution reaction (OER) kinetics. The microwave photoconductivity decay (μ-PCD) measurements confirm a prolonged minority carrier lifetime, demonstrating the critical role of electronic structure modulation in improving charge separation and reducing recombination. Using advanced synchrotron radiation and X-ray absorption spectroscopy, we unveil critical modifications to the interfacial electronic structure induced by the dual-interface engineering and their roles in enhancing PEC performance. These findings establish a clear relationship between electronic structure modulation, charge carrier dynamics, and PEC performance, providing new insights into interface design strategies for highly efficient solar-driven water splitting systems.
界面工程对于提高基于半导体的太阳能设备的效率至关重要。在这项工作中,我们报告了一种新颖的双界面工程策略,通过设计一种Ni(OH)/CoO/3C-SiC光阳极,该光阳极在光电化学(PEC)水分解性能方面实现了显著增强。优化后的光阳极在相对于可逆氢电极(RHE)为1.23 V时的光电流密度为1.68 mA cm,与原始的3C-SiC相比提高了8倍,同时具有出色的运行稳定性。在这种结构中,CoO作为高效的空穴提取层,并与3C-SiC形成p-n结,增强了光生电子-空穴对的分离。在Ni(OH)/CoO界面处,Ni-O-Co键的形成促进了快速电荷转移并加速了析氧反应(OER)动力学。微波光电导衰减(μ-PCD)测量证实了少数载流子寿命的延长,证明了电子结构调制在改善电荷分离和减少复合方面的关键作用。使用先进的同步辐射和X射线吸收光谱,我们揭示了双界面工程引起的界面电子结构的关键变化及其在增强PEC性能中的作用。这些发现建立了电子结构调制、电荷载流子动力学和PEC性能之间的明确关系,为高效太阳能驱动水分解系统的界面设计策略提供了新的见解。