Suppr超能文献

通过3C-SiC光阳极的双界面工程调控电子结构以增强太阳能水分解

Manipulating Electron Structure through Dual-Interface Engineering of 3C-SiC Photoanode for Enhanced Solar Water Splitting.

作者信息

Zeng Hui, Yoshioka Satoru, Wang Weimin, Han Zhongyuan, Ivanov Ivan G, Liang Hongwei, Darakchieva Vanya, Sun Jianwu

机构信息

Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden.

Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.

出版信息

J Am Chem Soc. 2025 Apr 30;147(17):14815-14823. doi: 10.1021/jacs.5c04005. Epub 2025 Apr 17.

Abstract

Interface engineering is crucial for enhancing the efficiency of semiconductor-based solar energy devices. In this work, we report a novel dual-interface engineering strategy by designing a Ni(OH)/CoO/3C-SiC photoanode that achieves remarkable enhancements in photoelectrochemical (PEC) water splitting performance. The optimized photoanode delivers a photocurrent density of 1.68 mA cm at 1.23 V vs the reversible hydrogen electrode (RHE), representing an 8-fold increase compared to pristine 3C-SiC, along with excellent operational stability. In this architecture, CoO serves as a highly efficient hole-extraction layer and forms a p-n junction with 3C-SiC, enhancing the separation of photogenerated electron-hole pairs. At the Ni(OH)/CoO interface, the formation of Ni-O-Co bonds facilitates rapid charge transfer and accelerates oxygen evolution reaction (OER) kinetics. The microwave photoconductivity decay (μ-PCD) measurements confirm a prolonged minority carrier lifetime, demonstrating the critical role of electronic structure modulation in improving charge separation and reducing recombination. Using advanced synchrotron radiation and X-ray absorption spectroscopy, we unveil critical modifications to the interfacial electronic structure induced by the dual-interface engineering and their roles in enhancing PEC performance. These findings establish a clear relationship between electronic structure modulation, charge carrier dynamics, and PEC performance, providing new insights into interface design strategies for highly efficient solar-driven water splitting systems.

摘要

界面工程对于提高基于半导体的太阳能设备的效率至关重要。在这项工作中,我们报告了一种新颖的双界面工程策略,通过设计一种Ni(OH)/CoO/3C-SiC光阳极,该光阳极在光电化学(PEC)水分解性能方面实现了显著增强。优化后的光阳极在相对于可逆氢电极(RHE)为1.23 V时的光电流密度为1.68 mA cm,与原始的3C-SiC相比提高了8倍,同时具有出色的运行稳定性。在这种结构中,CoO作为高效的空穴提取层,并与3C-SiC形成p-n结,增强了光生电子-空穴对的分离。在Ni(OH)/CoO界面处,Ni-O-Co键的形成促进了快速电荷转移并加速了析氧反应(OER)动力学。微波光电导衰减(μ-PCD)测量证实了少数载流子寿命的延长,证明了电子结构调制在改善电荷分离和减少复合方面的关键作用。使用先进的同步辐射和X射线吸收光谱,我们揭示了双界面工程引起的界面电子结构的关键变化及其在增强PEC性能中的作用。这些发现建立了电子结构调制、电荷载流子动力学和PEC性能之间的明确关系,为高效太阳能驱动水分解系统的界面设计策略提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e8c/12046598/f7dcfa3c0edf/ja5c04005_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验