Uzzaman Monir, Afrin Mst Farhana, Furukawa Mai, Tateishi Ikki, Katsumata Hideyuki, Kaneco Satoshi
Department of Applied Chemistry, Graduate School of Engineering, Mie University, Tsu 514-8507, Mie, Japan.
Mie Global Environment Center for Education & Research, Mie University, Tsu 514-8507, Mie, Japan.
Langmuir. 2025 Apr 29;41(16):10693-10704. doi: 10.1021/acs.langmuir.5c00991. Epub 2025 Apr 17.
In the pursuit of solar-driven photocatalytic energy generation, environmental remediation, and carbon neutrality, the development of semiconductor-based heterojunction photocatalysts presents a promising strategy. However, the photocatalytic efficiency of pristine ZnInS (ZIS) is hindered by rapid electron-hole recombination and a relatively small surface area. Meanwhile, pure graphene oxide (GO) is not an ideal photocatalyst due to its inappropriate bandgap and the presence of oxygenated functional groups. To overcome these limitations, a surfactant-assisted ZIS synthesis was combined with ammonia-treated GO (NGO) to form an NGO/ZIS composite that enhances light absorption, charge carrier separation and transport, and overall hydrogen production efficiency under visible light illumination. Among the evaluated materials, 0.1NGO/ZIS exhibited the highest hydrogen evolution rate (18.8 mmol·g h), demonstrating enhancements of 3-fold and 940-fold increased compared to pristine ZIS (5.8 mmol·g h) and NGO (0.02 mmol·g h), respectively. This superior photocatalytic performance is attributed to improved interfacial charge transfer between NGO and ZIS, facilitated by the incorporation of amine and amide groups into GO. Furthermore, density functional theory (DFT) calculations were conducted to validate the impact of ammonia treatment on GO and support the experimental findings. The synthesized photocatalysts were characterized by using X-ray diffraction (XRD), Fourier-transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), diffuse reflectance sorption spectroscopy (DRS), photoluminescence (PL), electrochemical impedance spectroscopy (EIS), electron spin resonance (ESR), and time-resolved photoluminescence (TRPL) analyses. This study presents a simple yet effective approach to fabricating NGO/ZIS composites, contributing to the advancement of high-performance photocatalysts for sustainable energy applications.
在追求太阳能驱动的光催化能源生成、环境修复和碳中和的过程中,基于半导体的异质结光催化剂的开发是一种很有前景的策略。然而,原始的ZnInS(ZIS)的光催化效率受到快速的电子-空穴复合和相对较小的表面积的阻碍。同时,纯氧化石墨烯(GO)由于其不合适的带隙和含氧官能团的存在,并不是一种理想的光催化剂。为了克服这些限制,将表面活性剂辅助的ZIS合成与氨处理的GO(NGO)相结合,形成了一种NGO/ZIS复合材料,该复合材料在可见光照射下增强了光吸收、电荷载流子的分离和传输以及整体产氢效率。在所评估的材料中,0.1NGO/ZIS表现出最高的析氢速率(18.8 mmol·g⁻¹ h⁻¹),分别比原始的ZIS(5.8 mmol·g⁻¹ h⁻¹)和NGO(0.02 mmol·g⁻¹ h⁻¹)提高了3倍和940倍。这种优异的光催化性能归因于NGO和ZIS之间界面电荷转移的改善,这是通过将胺基和酰胺基引入GO来实现的。此外,进行了密度泛函理论(DFT)计算,以验证氨处理对GO的影响并支持实验结果。通过X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、布鲁诺尔-埃米特-泰勒(BET)、漫反射吸附光谱(DRS)、光致发光(PL)、电化学阻抗谱(EIS)、电子自旋共振(ESR)和时间分辨光致发光(TRPL)分析对合成的光催化剂进行了表征。本研究提出了一种简单而有效的制备NGO/ZIS复合材料的方法,有助于推动用于可持续能源应用的高性能光催化剂的发展。