Villaronga-Luque Alba, Savill Ryan G, López-Anguita Natalia, Bolondi Adriano, Garai Sumit, Gassaloglu Seher Ipek, Rouatbi Roua, Schmeisser Kathrin, Poddar Aayush, Bauer Lisa, Alves Tiago, Traikov Sofia, Rodenfels Jonathan, Chavakis Triantafyllos, Bulut-Karslioglu Aydan, Veenvliet Jesse V
Stembryogenesis Laboratory, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Faculty of Biology, Technische Universität Dresden, 01307 Dresden, Germany.
Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
Cell Stem Cell. 2025 May 1;32(5):759-777.e13. doi: 10.1016/j.stem.2025.03.012. Epub 2025 Apr 16.
Considerable phenotypic variation under identical culture conditions limits the potential of stem-cell-based embryo models (SEMs) in basic and applied research. The biological processes causing this seemingly stochastic variation remain unclear. Here, we investigated the roots of phenotypic variation by parallel recording of transcriptomic states and morphological history in individual structures modeling embryonic trunk formation. Machine learning and integration of time-resolved single-cell RNA sequencing with imaging-based phenotypic profiling identified early features predictive of phenotypic end states. Leveraging this predictive power revealed that early imbalance of oxidative phosphorylation and glycolysis results in aberrant morphology and a neural lineage bias, which we confirmed by metabolic measurements. Accordingly, metabolic interventions improved phenotypic end states. Collectively, our work establishes divergent metabolic states as drivers of phenotypic variation and offers a broadly applicable framework to chart and predict phenotypic variation in organoids and SEMs. The strategy can be used to identify and control underlying biological processes, ultimately increasing reproducibility.
在相同培养条件下存在的显著表型变异限制了基于干细胞的胚胎模型(SEM)在基础研究和应用研究中的潜力。导致这种看似随机变异的生物学过程仍不清楚。在这里,我们通过并行记录模拟胚胎躯干形成的单个结构中的转录组状态和形态学历史,研究了表型变异的根源。机器学习以及时间分辨单细胞RNA测序与基于成像的表型分析的整合,确定了预测表型终末状态的早期特征。利用这种预测能力发现,氧化磷酸化和糖酵解的早期失衡会导致形态异常和神经谱系偏向,我们通过代谢测量证实了这一点。因此,代谢干预改善了表型终末状态。总的来说,我们的工作确立了不同的代谢状态作为表型变异的驱动因素,并提供了一个广泛适用的框架来绘制和预测类器官和SEM中的表型变异。该策略可用于识别和控制潜在的生物学过程,最终提高可重复性。