Suppr超能文献

动态 3D 组合生成具有不同区域和细胞特征的 hPSC 衍生神经中胚层类器官。

Dynamic 3D Combinatorial Generation of hPSC-Derived Neuromesodermal Organoids With Diverse Regional and Cellular Identities.

机构信息

Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts.

F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts.

出版信息

Curr Protoc. 2022 Oct;2(10):e568. doi: 10.1002/cpz1.568.

Abstract

Neuromesodermal progenitors represent a unique, bipotent population of progenitors residing in the tail bud of the developing embryo, which give rise to the caudal spinal cord cell types of neuroectodermal lineage as well as the adjacent paraxial somite cell types of mesodermal origin. With the advent of stem cell technologies, including induced pluripotent stem cells (iPSCs), the modeling of rare genetic disorders can be accomplished in vitro to interrogate cell-type specific pathological mechanisms in human patient conditions. Stem cell-derived models of neuromesodermal progenitors have been accomplished by several developmental biology groups; however, most employ a 2D monolayer format that does not fully reflect the complexity of cellular differentiation in the developing embryo. This article presents a dynamic 3D combinatorial method to generate robust populations of human pluripotent stem cell-derived neuromesodermal organoids with multi-cellular fates and regional identities. By utilizing a dynamic 3D suspension format for the differentiation process, the organoids differentiated by following this protocol display a hallmark of embryonic development that involves a morphological elongation known as axial extension. Furthermore, by employing a combinatorial screening assay, we dissect essential pathways for optimally directing the patterning of pluripotent stem cells into neuromesodermal organoids. This protocol highlights the influence of timing, duration, and concentration of WNT and fibroblast growth factor (FGF) signaling pathways on enhancing early neuromesodermal identity, and later, downstream cell fate specification through combined synergies of retinoid signaling and sonic hedgehog activation. Finally, through robust inhibition of the Notch signaling pathway, this protocol accelerates the acquisition of terminal cell identities. This enhanced organoid model can serve as a powerful tool for studying normal developmental processes as well as investigating complex neurodevelopmental disorders, such as neural tube defects. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Robust generation of 3D hPSC-derived spheroid populations in dynamic motion settings Support Protocol 1: Pluronic F-127 reagent preparation and coating to generate low-attachment suspension culture dishes Basic Protocol 2: Enhanced specification of hPSCs into NMP organoids Support Protocol 2: Combinatorial pathway assay for NMP organoid protocol optimization Basic Protocol 3: Differentiation of NMP organoids along diverse cellular trajectories and accelerated terminal fate specification into neurons, neural crest, and sclerotome derivatives.

摘要

神经中胚层祖细胞是一种独特的、双能祖细胞群体,存在于发育中胚胎的尾芽中,它们产生神经外胚层谱系的尾脊髓细胞类型以及中胚层来源的相邻轴旁体节细胞类型。随着干细胞技术的出现,包括诱导多能干细胞(iPSCs),可以在体外完成罕见遗传疾病的建模,以研究人类患者疾病中特定于细胞类型的病理机制。神经中胚层祖细胞的干细胞衍生模型已被几个发育生物学小组完成;然而,大多数采用 2D 单层格式,不能完全反映胚胎发育中细胞分化的复杂性。本文提出了一种动态 3D 组合方法,用于生成具有多细胞命运和区域身份的人类多能干细胞衍生的神经中胚层类器官的强大群体。通过在分化过程中使用动态 3D 悬浮格式,按照本方案分化的类器官显示出涉及称为轴向延伸的形态伸长的胚胎发育标志。此外,通过采用组合筛选测定法,我们剖析了最佳指导多能干细胞向神经中胚层类器官模式化的必需途径。该方案强调了 WNT 和成纤维细胞生长因子(FGF)信号通路的时间、持续时间和浓度对增强早期神经中胚层特性的影响,以及通过视黄酸信号和 sonic hedgehog 激活的组合协同作用对下游细胞命运特化的影响。最后,通过稳健的 Notch 信号通路抑制,该方案加速了终末细胞特性的获得。这种增强的类器官模型可以作为研究正常发育过程以及研究复杂神经发育障碍(如神经管缺陷)的有力工具。

相似文献

引用本文的文献

1
Human Brain Organoids: Development and Applications.人类大脑类器官:发育与应用
J Microbiol Biotechnol. 2025 May 28;35:e2411040. doi: 10.4014/jmb.2411.11040.
3
Stem cell modeling of nervous system tumors.神经系统肿瘤的干细胞建模。
Dis Model Mech. 2024 Feb 1;17(2). doi: 10.1242/dmm.050533. Epub 2024 Feb 14.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验