Suppr超能文献

Detoxification techniques for bacterial toxins: A pathway to effective toxoid vaccines.

作者信息

Esmaeilnejad-Ahranjani Parvaneh, Shahali Youcef, Dadar Maryam

机构信息

Department of Research and Development, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

Centre Hospitalier Universitaire de Besançon, Besançon, France.

出版信息

Toxicon. 2025 Jun;260:108365. doi: 10.1016/j.toxicon.2025.108365. Epub 2025 Apr 17.

Abstract

Bacterial toxins play a critical role in the virulence of many pathogens, leading to serious diseases such as tetanus, diphtheria, botulism, and entrotoxemia. As key virulence factors, these toxins cause significant tissue damage and disease manifestations in infected hosts. Vaccination against these toxins through toxoid vaccines, composed of inactivated forms of the toxins, represents a vital strategy for preventing toxin-mediated diseases. However, creating effective toxoid vaccines necessitates meticulous detoxification processes that ensure the loss of toxicity while retaining the immunogenic properties inherent in the native toxins. This review offers a comprehensive evaluation of the diverse methodologies employed for detoxifying bacterial toxins, highlighting their advantages, limitations, and implications for vaccine development. By detailing comparisons of efficacy, stability, residual toxicity, and clinical applicability, we demonstrate that while traditional methods utilizing chemical reagents (such as formaldehyde) remain widely used, emerging technologies like genetic inactivation and protein engineering present significant advantages. These innovations promise to advance the development of durable and irreversible toxoid vaccines that protect public health and contribute to future vaccine formulation improvements. Ultimately, this knowledge synthesis aims to guide future research efforts and facilitate the design of safer and more effective toxoid vaccines to combat the public health threats posed by toxin-producing bacteria.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验