Suppr超能文献

信使核糖核酸(mRNA)内下游结构元件对核糖体亚基间旋转动力学的影响。

The influence of downstream structured elements within mRNA on the dynamics of intersubunit rotation in ribosomes.

作者信息

Shebl Bassem, Pavlova Anna, Kellenberger Preston, Yu Dongmei, Menke Drew E, Gumbart James C, Cornish Peter V

机构信息

Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA.

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

出版信息

RNA. 2025 Jun 16;31(7):973-987. doi: 10.1261/rna.080291.124.

Abstract

Proper codon/anticodon pairing within the ribosome necessitates linearity of the transcript. Any structures formed within a messenger RNA (mRNA) must be unwound before the respective codon is interpreted. Linearity, however, is not always the norm; some intricate structures within mRNA are able to exert unique ribosome/mRNA interactions to regulate translation. Intrinsic kinetic and thermal stability in many of these structures are efficient in slowing translation causing pausing of the ribosome. Altered translation kinetics arising from atypical interactions have been shown to affect intersubunit rotation. Here, we employ single-molecule Förster resonance energy transfer (smFRET) to observe changes in intersubunit rotation of the ribosome as it approaches downstream structured nucleic acid. The emergence of the hyperrotated state is critically dependent on the distance between downstream structure and the ribosome, suggesting interactions with the helicase center are allosterically coupled to intersubunit rotation. Further, molecular dynamics (MD) simulations were performed to determine ribosomal protein/mRNA interactions that may play a pivotal role in helicase activity and ultimately unwinding of downstream structure.

摘要

核糖体内部正确的密码子/反密码子配对需要转录本具有线性。信使核糖核酸(mRNA)内形成的任何结构都必须在相应密码子被解读之前解开。然而,线性并不总是常态;mRNA内的一些复杂结构能够发挥独特的核糖体/mRNA相互作用来调节翻译。这些结构中许多的内在动力学和热稳定性有效地减缓了翻译,导致核糖体暂停。非典型相互作用引起的翻译动力学改变已被证明会影响亚基间的旋转。在这里,我们采用单分子Förster共振能量转移(smFRET)来观察核糖体在接近下游结构化核酸时亚基间旋转的变化。超旋转状态的出现严重依赖于下游结构与核糖体之间的距离,这表明与解旋酶中心的相互作用与亚基间旋转是变构偶联的。此外,进行了分子动力学(MD)模拟,以确定可能在解旋酶活性以及最终下游结构解旋中起关键作用的核糖体蛋白/mRNA相互作用。

相似文献

2
Doublet decoding of tRNA demonstrates plasticity of ribosomal decoding center.
Nat Commun. 2025 Jun 26;16(1):5402. doi: 10.1038/s41467-025-61016-5.
3
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
4
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
6
Thrombolysis for acute ischaemic stroke.
Cochrane Database Syst Rev. 2003(3):CD000213. doi: 10.1002/14651858.CD000213.
7
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
8
Perioperative medications for preventing temporarily increased intraocular pressure after laser trabeculoplasty.
Cochrane Database Syst Rev. 2017 Feb 23;2(2):CD010746. doi: 10.1002/14651858.CD010746.pub2.
9
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.
Clin Orthop Relat Res. 2025 Jan 1;483(1):39-48. doi: 10.1097/CORR.0000000000003161. Epub 2024 Jun 21.
10
Discovery of functional factorless internal ribosome entry site-like structures through virome mining.
PLoS Pathog. 2025 Jun 26;21(6):e1013255. doi: 10.1371/journal.ppat.1013255. eCollection 2025 Jun.

本文引用的文献

1
mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding.
Elife. 2020 May 19;9:e55799. doi: 10.7554/eLife.55799.
2
Ribosome rearrangements at the onset of translational bypassing.
Sci Adv. 2017 Jun 7;3(6):e1700147. doi: 10.1126/sciadv.1700147. eCollection 2017 Jun.
3
Kinetics of Spontaneous and EF-G-Accelerated Rotation of Ribosomal Subunits.
Cell Rep. 2016 Aug 23;16(8):2187-2196. doi: 10.1016/j.celrep.2016.07.051. Epub 2016 Aug 11.
4
Preparation of ribosomes for smFRET studies: A simplified approach.
Arch Biochem Biophys. 2016 Aug 1;603:118-30. doi: 10.1016/j.abb.2016.05.010. Epub 2016 May 19.
5
Ribosome Mechanics Informs about Mechanism.
J Mol Biol. 2016 Feb 27;428(5 Pt A):802-810. doi: 10.1016/j.jmb.2015.12.003. Epub 2015 Dec 11.
6
Coupling of mRNA Structure Rearrangement to Ribosome Movement during Bypassing of Non-coding Regions.
Cell. 2015 Nov 19;163(5):1267-1280. doi: 10.1016/j.cell.2015.10.064.
7
Structure of the E. coli ribosome-EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM.
Nature. 2015 Apr 23;520(7548):567-70. doi: 10.1038/nature14275. Epub 2015 Feb 23.
8
Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways.
Cell. 2015 Feb 26;160(5):870-881. doi: 10.1016/j.cell.2015.02.003. Epub 2015 Feb 19.
9
Modulation of decoding fidelity by ribosomal proteins S4 and S5.
J Bacteriol. 2015 Mar;197(6):1017-25. doi: 10.1128/JB.02485-14. Epub 2014 Dec 29.
10
Ribosome structure and dynamics by smFRET microscopy.
Methods Enzymol. 2014;549:375-406. doi: 10.1016/B978-0-12-801122-5.00016-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验