Cui Li-Ping, Zhang Shu, Zhao Yue, Ge Xin-Yue, Yang Le, Li Ke, Feng Liu-Bin, Li Ren-Gui, Chen Jia-Jia
State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China.
Nat Commun. 2025 Apr 17;16(1):3674. doi: 10.1038/s41467-025-58622-8.
It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural solar-to-fuel process. In this work, we present a defect engineering strategy to design soluble multi-electron redox polyoxometalates mediators to construct a photocatalysis-electrolysis relay system to decouple H and O evolution in solar-driven water splitting. The appropriate use of vanadium atoms to replace tungsten in the Dawson-type phosphotungstate successfully regulated the redox properties of the molecular clusters. Specifically, the single vanadium substitution structure ({PWV}) possesses 1-electron redox active and sequential proton-electron transfer behavior, while the tri-vanadium substituted cluster ({PWV}) exhibits 3-electron redox active and cooperative proton electron transfer behavior. Based on the developed multi-electronic redox mediator with pH buffering capacity, suitable redox potential (0.6 V), and fast electron exchange rate, we build a photocatalysis-electrolysis relay water splitting system. This system allows for high capacity of solar energy storage through photocatalytic O evolution using BiVO photocatalyst and stable H production with a high Faraday efficiency of over 98.5% in the electrolysis subsystem.
探索具有多电子、合适的氧化还原电位和稳定的pH缓冲能力的氧化还原介质以模拟自然的太阳能到燃料的过程仍然是一个巨大的挑战。在这项工作中,我们提出了一种缺陷工程策略,设计可溶性多电子氧化还原多金属氧酸盐介质,构建光催化-电解中继系统,以解耦太阳能驱动水分解中的析氢和析氧过程。在道森型磷钨酸盐中适当使用钒原子取代钨成功地调节了分子簇的氧化还原性质。具体而言,单钒取代结构({PWV})具有1电子氧化还原活性和顺序质子-电子转移行为,而三钒取代簇({PWV})表现出3电子氧化还原活性和协同质子-电子转移行为。基于开发的具有pH缓冲能力、合适的氧化还原电位(0.6 V)和快速电子交换速率的多电子氧化还原介质,我们构建了光催化-电解中继水分解系统。该系统通过使用BiVO光催化剂进行光催化析氧实现了高容量的太阳能存储,并在电解子系统中以超过98.5%的高法拉第效率稳定产氢。