Suppr超能文献

拖拉机液压机械无级变速器设计参数的多目标优化

Multi-objective optimization of design parameters for tractor hydro-mechanical continuously variable transmissions.

作者信息

Zhu Zhen, Hou Rui, Zhang Hongwei, Wang Dehai, Chen Long

机构信息

Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.

National Key Laboratory of Special Vehicle Design and Manufacturing Integration Technology, Baotou, 014030, Inner Mongolia, China.

出版信息

Sci Rep. 2025 Apr 17;15(1):13261. doi: 10.1038/s41598-025-89425-y.

Abstract

The design parameters of the transmission directly affect the vehicle's dynamics and fuel economy, due to the complexity of the tractor's working conditions and operating modes, the optimization of the transmission design parameters is more difficult. In this paper, an independently designed hydro-mechanical CVT transmission is taken as the research object, and the transmission design parameters are optimized based on the tractor's whole life-cycle speed usage rate, and the Multi-Objective Genetic Algorithm(MOGA) is used for optimization and solution. In this paper, the fuel consumption rate and hill climbing degree are taken as the optimization objective function, the parameters that have a greater influence on the optimization objectives are selected as the design variables, and the constraints are determined. A multi-objective genetic algorithm based on the Pareto optimality principle combined with experimental design is used to establish a multi-objective optimization model of the transmission device based on modeFrontier, and a global search for optimality is carried out, and a Pareto optimal solution is finally obtained. The results of the study find the optimal solution under the constraints, reflecting the conflicting characteristics between power and fuel economy. The design variables of the Pareto optimal solution obtained through optimization iterations based on the whole life cycle speed usage rate satisfy the matching requirements of the transmission well.

摘要

变速器的设计参数直接影响车辆的动力学性能和燃油经济性,由于拖拉机工作条件和运行模式的复杂性,变速器设计参数的优化更加困难。本文以自主设计的液压机械无级变速器为研究对象,基于拖拉机全生命周期速度使用率对变速器设计参数进行优化,并采用多目标遗传算法(MOGA)进行优化求解。本文以燃油消耗率和爬坡能力为优化目标函数,选取对优化目标影响较大的参数作为设计变量,并确定约束条件。基于帕累托最优原理结合实验设计的多目标遗传算法,利用modeFrontier建立变速器装置的多目标优化模型,进行全局最优搜索,最终得到帕累托最优解。研究结果在约束条件下找到了最优解,体现了动力性与燃油经济性之间的矛盾特性。基于全生命周期速度使用率通过优化迭代得到的帕累托最优解的设计变量很好地满足了变速器的匹配要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd87/12006330/ea51e98832a1/41598_2025_89425_Fig1_HTML.jpg

相似文献

2
Optimizing the fuel economy of hydrostatic power-split system in continuously variable tractor transmission.
Heliyon. 2023 May 2;9(5):e15915. doi: 10.1016/j.heliyon.2023.e15915. eCollection 2023 May.
4
Output speed control for hydro-mechanical continuously variable transmission of tractor.
PLoS One. 2024 Sep 24;19(9):e0308493. doi: 10.1371/journal.pone.0308493. eCollection 2024.
5
Research on energy optimization control strategy for parallel hybrid tractor based on AIPSO.
PLoS One. 2025 Feb 13;20(2):e0315369. doi: 10.1371/journal.pone.0315369. eCollection 2025.
6
COSMO: A dynamic programming algorithm for multicriteria codon optimization.
Comput Struct Biotechnol J. 2020 Jun 30;18:1811-1818. doi: 10.1016/j.csbj.2020.06.035. eCollection 2020.
7
Multi-objective optimization design of the Hinge Sleeve of Cubic based on Kriging.
Sci Prog. 2023 Jul-Sep;106(3):368504231203108. doi: 10.1177/00368504231203108.
8
Searching for the Pareto frontier in multi-objective protein design.
Biophys Rev. 2017 Aug;9(4):339-344. doi: 10.1007/s12551-017-0288-0. Epub 2017 Aug 10.
9
Performance Optimization of Surface Plasmon Resonance Imaging Sensor Network Based on the Multi-Objective Optimization Algorithm.
Comput Intell Neurosci. 2022 Jul 31;2022:3692984. doi: 10.1155/2022/3692984. eCollection 2022.
10
Pareto multi-objective optimization of tandem cold rolling settings for reductions and inter stand tensions using NSGA-II.
ISA Trans. 2022 Nov;130:399-408. doi: 10.1016/j.isatra.2022.04.002. Epub 2022 Apr 6.

本文引用的文献

1
Design of Examination Management System for Engineering Management.
IOP Conf Ser Earth Environ Sci. 2020 Apr;474(7):072047. doi: 10.1088/1755-1315/474/7/072047.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验