Suppr超能文献

在多目标蛋白质设计中寻找帕累托前沿

Searching for the Pareto frontier in multi-objective protein design.

作者信息

Nanda Vikas, Belure Sandeep V, Shir Ofer M

机构信息

Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA.

Department of Biochemistry and Molecular Biophysics, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.

出版信息

Biophys Rev. 2017 Aug;9(4):339-344. doi: 10.1007/s12551-017-0288-0. Epub 2017 Aug 10.

Abstract

The goal of protein engineering and design is to identify sequences that adopt three-dimensional structures of desired function. Often, this is treated as a single-objective optimization problem, identifying the sequence-structure solution with the lowest computed free energy of folding. However, many design problems are multi-state, multi-specificity, or otherwise require concurrent optimization of multiple objectives. There may be tradeoffs among objectives, where improving one feature requires compromising another. The challenge lies in determining solutions that are part of the Pareto optimal set-designs where no further improvement can be achieved in any of the objectives without degrading one of the others. Pareto optimality problems are found in all areas of study, from economics to engineering to biology, and computational methods have been developed specifically to identify the Pareto frontier. We review progress in multi-objective protein design, the development of Pareto optimization methods, and present a specific case study using multi-objective optimization methods to model the tradeoff between three parameters, stability, specificity, and complexity, of a set of interacting synthetic collagen peptides.

摘要

蛋白质工程与设计的目标是识别能够形成具有所需功能三维结构的序列。通常,这被视为一个单目标优化问题,即识别具有最低计算折叠自由能的序列-结构解决方案。然而,许多设计问题是多状态、多特异性的,或者需要同时优化多个目标。目标之间可能存在权衡,即改善一个特征需要牺牲另一个特征。挑战在于确定属于帕累托最优集的解决方案——在不降低其他目标之一的情况下,无法在任何目标上进一步改进的设计。帕累托最优问题存在于从经济学到工程学再到生物学的所有研究领域,并且已经专门开发了计算方法来识别帕累托前沿。我们回顾了多目标蛋白质设计的进展、帕累托优化方法的发展,并展示了一个具体案例研究,该研究使用多目标优化方法对一组相互作用的合成胶原蛋白肽的稳定性、特异性和复杂性这三个参数之间的权衡进行建模。

相似文献

1
Searching for the Pareto frontier in multi-objective protein design.
Biophys Rev. 2017 Aug;9(4):339-344. doi: 10.1007/s12551-017-0288-0. Epub 2017 Aug 10.
2
3
Introducing robustness in multi-objective optimization.
Evol Comput. 2006 Winter;14(4):463-94. doi: 10.1162/evco.2006.14.4.463.
4
Automated Design Framework for Synthetic Biology Exploiting Pareto Optimality.
ACS Synth Biol. 2017 Jul 21;6(7):1180-1193. doi: 10.1021/acssynbio.6b00306. Epub 2017 Apr 12.
5
Pareto optimization in computational protein design with multiple objectives.
J Comput Chem. 2008 Dec;29(16):2704-11. doi: 10.1002/jcc.20981.
6
Assisting decision-makers select multi-dimensionally efficient infrastructure designs - Application to urban drainage systems.
J Environ Manage. 2023 Jun 15;336:117689. doi: 10.1016/j.jenvman.2023.117689. Epub 2023 Mar 14.
7
Multiobjective Optimization of Linear Cooperative Spectrum Sensing: Pareto Solutions and Refinement.
IEEE Trans Cybern. 2016 Jan;46(1):96-108. doi: 10.1109/TCYB.2015.2395412. Epub 2015 Mar 19.
8
Optimal Design of Energy Systems Using Constrained Grey-Box Multi-Objective Optimization.
Comput Chem Eng. 2018 Aug 4;116:488-502. doi: 10.1016/j.compchemeng.2018.02.017. Epub 2018 Feb 21.
9
Investigating multi-objective fluence and beam orientation IMRT optimization.
Phys Med Biol. 2017 Jul 7;62(13):5228-5244. doi: 10.1088/1361-6560/aa7298. Epub 2017 May 11.

引用本文的文献

1
How electrostatic networks modulate specificity and stability of collagen.
Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6207-6212. doi: 10.1073/pnas.1802171115. Epub 2018 May 29.
2
ProLego: tool for extracting and visualizing topological modules in protein structures.
BMC Bioinformatics. 2018 May 4;19(1):167. doi: 10.1186/s12859-018-2171-9.

本文引用的文献

1
Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas.
Nat Nanotechnol. 2017 Feb;12(2):163-169. doi: 10.1038/nnano.2016.224. Epub 2016 Oct 24.
2
Design and engineering of deimmunized biotherapeutics.
Curr Opin Struct Biol. 2016 Aug;39:79-88. doi: 10.1016/j.sbi.2016.06.003. Epub 2016 Jun 17.
3
Antibody humanization by structure-based computational protein design.
MAbs. 2015;7(6):1045-57. doi: 10.1080/19420862.2015.1076600. Epub 2015 Aug 7.
4
Computational redesign of the lipid-facing surface of the outer membrane protein OmpA.
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9632-7. doi: 10.1073/pnas.1501836112. Epub 2015 Jul 21.
5
Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences.
PLoS Comput Biol. 2015 Jul 6;11(7):e1004300. doi: 10.1371/journal.pcbi.1004300. eCollection 2015 Jul.
6
Mapping the Pareto optimal design space for a functionally deimmunized biotherapeutic candidate.
PLoS Comput Biol. 2015 Jan 8;11(1):e1003988. doi: 10.1371/journal.pcbi.1003988. eCollection 2015 Jan.
7
The CamSol method of rational design of protein mutants with enhanced solubility.
J Mol Biol. 2015 Jan 30;427(2):478-90. doi: 10.1016/j.jmb.2014.09.026. Epub 2014 Oct 14.
8
A "fuzzy"-logic language for encoding multiple physical traits in biomolecules.
J Mol Biol. 2014 Dec 12;426(24):4125-4138. doi: 10.1016/j.jmb.2014.10.002. Epub 2014 Oct 13.
9
Biotransformation and in vivo stability of protein biotherapeutics: impact on candidate selection and pharmacokinetic profiling.
Drug Metab Dispos. 2014 Nov;42(11):1873-80. doi: 10.1124/dmd.114.058347. Epub 2014 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验