Alotaibi Hadil Faris, Mohsen Ahmed, Kanabar Bhavesh, Kumar Abhinav, Patil Nagaraj, Shit Debasish, Bupesh Raja V K, Thatoi Dhirendra Nath, Gupta Deepak
Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint AbdulRahman University, Riyadh, 11671, Saudi Arabia.
Refrigeration & Air-condition Department, Technical Engineering College, The Islamic University, Najaf, Iraq.
Sci Rep. 2025 Apr 17;15(1):13243. doi: 10.1038/s41598-025-95873-3.
Abnormal emission of environmentally-hazardous greenhouse pollutants (mainly CO) to the atmosphere have motivated global researchers to develop green, affordable and effective techniques to maximize their separation from different feed. To reach this aim, application of more effective and greener absorbing solutions is of great importance to decrease the harmful disadvantages of benchmark amine solutions like corrosion, eco-detriment and complexity of operation. In the current decades, nanofluids have shown great ability of application in membrane-based separation industries owing to their outstanding privileges like high specific surface area, great stability and feasibility of employment in both hydrophilic and hydrophobic membranes. The main novelty of this scientific investigation is the efficiency comparison of SiO-based nanofluid with monoethanolamine (MEA) benchmark solution for CO capture in gas-liquid membrane contactor (MC) using CFD approach. Analysis of the results showed the approximately similar performance of SiO-based nanofluid compared to MEA for separating CO (98.8% using SiO-based nanofluid VS 99.5% using MEA). Despite lower efficiency, SiO-based nanofluid can be well identified as an environmentally-friendly and efficient alternative absorbent for use in CO-separation industries instead of chemically-detrimental MEA solutions. Additionally, effects of some membrane/module parameters like number of fibers, module length and gas velocity on the separation of CO are explained, comprehensively.
向大气中异常排放对环境有害的温室污染物(主要是一氧化碳),促使全球研究人员开发绿色、经济且有效的技术,以最大程度地从不同进料中分离出这些污染物。为实现这一目标,应用更有效、更环保的吸收溶液对于减少基准胺溶液的有害缺点(如腐蚀、对生态环境的损害和操作复杂性)至关重要。在过去几十年中,纳米流体因其具有高比表面积、高稳定性以及在亲水性和疏水性膜中均适用等突出优势,在基于膜的分离行业中展现出了巨大的应用潜力。本科学研究的主要新颖之处在于,采用计算流体动力学(CFD)方法,对基于二氧化硅的纳米流体与单乙醇胺(MEA)基准溶液在气液膜接触器(MC)中捕获一氧化碳的效率进行了比较。结果分析表明,基于二氧化硅的纳米流体在分离一氧化碳方面的性能与MEA大致相似(使用基于二氧化硅的纳米流体时分离效率为98.8%,使用MEA时为99.5%)。尽管效率较低,但基于二氧化硅的纳米流体可被明确视为一种环境友好且高效的替代吸收剂,可用于一氧化碳分离行业,以取代对化学环境有害的MEA溶液。此外,还全面解释了一些膜/组件参数(如纤维数量、组件长度和气体流速)对一氧化碳分离的影响。