Suppr超能文献

PP2A:B55与p107和Eya3的冷冻电镜结构确定了底物募集。

Cryo-EM structures of PP2A:B55 with p107 and Eya3 define substrate recruitment.

作者信息

Padi Sathish K R, Godek Rachel J, Peti Wolfgang, Page Rebecca

机构信息

Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA.

Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA.

出版信息

Nat Struct Mol Biol. 2025 Apr 17. doi: 10.1038/s41594-025-01535-3.

Abstract

Phosphoprotein phosphatases (PPPs) achieve specificity by binding substrates and regulators using PPP-specific short motifs. Protein phosphatase 2A (PP2A) is a highly conserved phosphatase that regulates cell signaling and is a tumor suppressor. Here, we use cryo-electron microscopy and nuclear magnetic resonance (NMR) spectroscopy to investigate the mechanisms of human p107 substrate and Eya3 regulator recruitment to the PP2A:B55 holoenzyme. We show that, while they associate with B55 using a common set of interaction pockets, the mechanism of substrate and regulator binding differs and is distinct from that observed for PP2A:B56 and other PPPs. We also identify the core B55 recruitment motif in Eya3 proteins, a sequence conserved amongst the Eya family. Lastly, using NMR-based dephosphorylation assays, we demonstrate how B55 recruitment directs PP2A:B55 fidelity through the selective dephosphorylation of specific phosphosites. As PP2A:B55 orchestrates mitosis and DNA damage repair, these data provide a roadmap for pursuing new avenues to therapeutically target this complex by individually blocking a subset of regulators that use different B55 interaction sites.

摘要

磷蛋白磷酸酶(PPPs)通过使用PPP特异性短基序结合底物和调节因子来实现特异性。蛋白磷酸酶2A(PP2A)是一种高度保守的磷酸酶,可调节细胞信号传导,是一种肿瘤抑制因子。在这里,我们使用冷冻电子显微镜和核磁共振(NMR)光谱来研究人类p107底物和Eya3调节因子募集到PP2A:B55全酶的机制。我们表明,虽然它们使用一组共同的相互作用口袋与B55结合,但底物和调节因子的结合机制不同,且与PP2A:B56和其他PPPs所观察到的机制不同。我们还确定了Eya3蛋白中的核心B55募集基序,这是Eya家族中保守的序列。最后,使用基于NMR的去磷酸化测定,我们证明了B55募集如何通过特定磷酸位点的选择性去磷酸化来指导PP2A:B55的保真度。由于PP2A:B55协调有丝分裂和DNA损伤修复,这些数据为通过单独阻断使用不同B55相互作用位点的调节因子子集来治疗性靶向该复合物的新途径提供了路线图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验