Guo Zhonghua, Sun Jin, Chen Xingguang, Li Hui, Liang Sisi, Liu Fengying, Qu Tong, Wang Huaer, Li Xueli, Ou Zitong, Feng Haoran, Ma Jinbiao, Wang Sheng, Wang Lulu, Tang Boping, Wang Gang, Qin Yuan, Cheng Yan
Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.
Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.
Front Plant Sci. 2025 Apr 1;16:1538669. doi: 10.3389/fpls.2025.1538669. eCollection 2025.
The HKT protein family plays a vital role in plant responses to salt stress by mediating sodium (Na) and potassium (K) transport and maintaining Na-K balance. (), a pantropical creeping plant distributed along coastal regions in tropical and subtropical zones, exhibits exceptional salt tolerance. Understanding its salt tolerance mechanisms provides valuable insights for developing salt-tolerant crops and identifying candidate genes for genetic engineering. In this study, we identified two HKT genes, and , in . Phylogenetic analysis with HKT genes from other species revealed that all analyzed species contain two HKT genes located adjacently on the same chromosome. Comparative analysis of conserved motifs and intron-exon structures indicated that, despite their close evolutionary relationship, the HKT genes in may exhibit functional divergence. Promoter analysis showed that their regulatory regions are enriched with cis-elements associated with responses to biotic and abiotic stresses, hormonal signaling, and growth, highlighting functional diversity within the HKT family. Subcellular localization experiments demonstrated that and are ion transporters localized to the plasma membrane. Heterologous expression in yeast confirmed their role in Na/K symporter. Furthermore, RT-qPCR analysis revealed distinct expression patterns under salt stress: was significantly upregulated in roots, while expression was transitionally downregulated at 400 mM NaCl treatment. Prolonged high expression of in roots suggests its critical role in sustained salt stress tolerance. These findings provide new insights into the molecular mechanisms of salt tolerance in . The identification of and as key players in salt stress responses offers promising genetic resources for enhancing crop resilience to soil salinity, addressing challenges associated with global salinization.
HKT蛋白家族通过介导钠(Na)和钾(K)的运输以及维持Na-K平衡,在植物对盐胁迫的响应中发挥着至关重要的作用。(某植物名称),一种分布于热带和亚热带沿海地区的泛热带匍匐植物,表现出卓越的耐盐性。了解其耐盐机制为培育耐盐作物和鉴定基因工程候选基因提供了宝贵的见解。在本研究中,我们在(该植物名称)中鉴定出两个HKT基因,(基因名称1)和(基因名称2)。与来自其他(植物种类)物种的HKT基因进行系统发育分析表明,所有分析的物种都含有两个相邻位于同一条染色体上的HKT基因。对保守基序和内含子-外显子结构的比较分析表明,尽管它们的进化关系密切,但(该植物名称)中的HKT基因可能表现出功能差异。启动子分析表明,它们的调控区域富含与生物和非生物胁迫响应、激素信号传导及生长相关的顺式元件,突出了HKT家族内的功能多样性。亚细胞定位实验表明,(蛋白名称1)和(蛋白名称2)是定位于质膜的离子转运体。在酵母中的异源表达证实了它们在Na/K同向转运体中的作用。此外,RT-qPCR分析揭示了盐胁迫下不同的表达模式:(基因名称1)在根中显著上调,而(基因名称2)在400 mM NaCl处理时表达呈短暂下调。(基因名称1)在根中的长时间高表达表明其在持续耐盐胁迫中的关键作用。这些发现为(该植物名称)耐盐的分子机制提供了新的见解。将(基因名称1)和(基因名称2)鉴定为盐胁迫响应中的关键参与者,为提高作物对土壤盐分的抗性提供了有前景的遗传资源,应对与全球盐碱化相关的挑战。