Ahmed H Shafeeq
Bangalore Medical College and Research Institute, Bangalore, 560002 Karnataka India.
Indian J Thorac Cardiovasc Surg. 2025 May;41(5):629-644. doi: 10.1007/s12055-025-01911-0. Epub 2025 Mar 8.
Survival analysis is critical in clinical research, especially in cardiothoracic surgery, to assess outcomes and compare interventions. Certain key survival analysis tools, including Kaplan-Meier (KM) curves, log-rank tests, and Cox proportional hazards models, are helpful in providing insights into survival probabilities and risk factors. KM curves help analyze time-to-event data, estimating survival probabilities, while log-rank tests compare survival distributions across groups. Cox proportional hazards models identify covariates influencing survival and calculate hazard ratios, which quantify the relative risk associated with specific variables. Together, these methods enable clinicians to make evidence-based decisions, optimize treatments, and improve patient outcomes.
生存分析在临床研究中至关重要,尤其是在心胸外科手术中,用于评估预后并比较不同干预措施。某些关键的生存分析工具,包括Kaplan-Meier(KM)曲线、对数秩检验和Cox比例风险模型,有助于深入了解生存概率和风险因素。KM曲线有助于分析事件发生时间数据,估计生存概率,而对数秩检验则比较不同组之间的生存分布。Cox比例风险模型可识别影响生存的协变量并计算风险比,该风险比量化了与特定变量相关的相对风险。这些方法共同使临床医生能够做出基于证据的决策,优化治疗方案并改善患者预后。