Suppr超能文献

基于网络药理学、分子对接和分子动力学模拟,探讨雷公藤甲素通过RhoA/ Rho相关激酶轴抑制类风湿关节炎中成纤维样滑膜细胞运动的机制。

Exploring the mechanism of triptolide inhibiting the motility of fibroblast-like synoviocytes in rheumatoid arthritis via RhoA/Rho-associated kinase axis, based on network pharmacology, molecular docking and molecular dynamics simulations.

作者信息

Shen Jiacheng, Fang Yuxuan, Xu Nan, Chen Hongyi, Zhu Miao, Li Dan, Chu Zewen, Sunagawa Masataka, Liu Yanqing, Wang Haibo, Li Guoqing

机构信息

Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.

Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China.

出版信息

Front Pharmacol. 2025 Apr 3;16:1545514. doi: 10.3389/fphar.2025.1545514. eCollection 2025.

Abstract

BACKGROUND AND OBJECTIVE

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by the hyperproliferation and invasive behavior of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS), which contributes to the degradation of articular cartilage and bone. Inhibition of RA-FLS proliferation, migration and invasion has become an important therapeutic strategy for RA. Triptolide (TPL), an epoxy diterpene lactone compound from the traditional Chinese medicine , has significant immunosuppressive and anti-inflammatory effects. However, the specific mechanisms of TPL-regulated effects on RA-FLS cytoskeleton and inhibition of invasive metastasis are not yet fully explored. The aim of this study was to investigate TPL-regulated effects on RA-FLS skeleton and reveal the specific mechanism of TPL-inhibition of RA-FLS migration and invasion.

MATERIALS AND METHODS

experiments were performed using RA-FLS cell line. Cell motility was evaluated by wound healing assay and Transwell assay as well as high content cell imaging system. Cytoskeletal remodeling was observed by cytoskeletal immunofluorescence staining and transmission electron microscopy (TEM). Network pharmacology predicted the targets of Triptolide. RhoA/Rho-associated kinase signaling pathway was detected by quantitative real-time PCR and Western blotting. Molecular docking and molecular dynamics simulations were used to validate the interaction of Triptolide with RhoA/Rho-associated kinase.

RESULTS

TPL significantly inhibited RA-FLS cell motility, and reduced the displacement and cumulative distance of RA-FLS. Cytoskeleton staining assay and TEM observation showed cytoskeleton remodeling after TPL treatment. Network pharmacological prediction screened 45 targets associated with TPL intervention in RA via cytoskeleton, including TNF, KRAS, ESR1, RHOA, MAPK3 and CASP3. In the RhoA/Rho-associated kinase signaling pathway, TPL treatment inhibited protein expression and phosphorylation of RhoA, Rock, and Limk. TPL can enter RhoA, Rock1, and Rock2 target protein binding domains with stable binding activities, and may cause conformational changes of Rock1 related to molecular functions.

CONCLUSION

TPL inhibits RA-FLS in motility by regulating actin cytoskeleton remodeling through action on the RhoA/Rho-associated kinase signaling pathway.

摘要

背景与目的

类风湿关节炎(RA)是一种慢性自身免疫性疾病,其特征为类风湿关节炎成纤维样滑膜细胞(RA-FLS)的过度增殖和侵袭行为,这会导致关节软骨和骨的降解。抑制RA-FLS的增殖、迁移和侵袭已成为RA的重要治疗策略。雷公藤甲素(TPL)是一种来自中药的环氧二萜内酯化合物,具有显著的免疫抑制和抗炎作用。然而,TPL调节RA-FLS细胞骨架及抑制侵袭转移的具体机制尚未完全阐明。本研究旨在探讨TPL对RA-FLS骨架的调节作用,并揭示TPL抑制RA-FLS迁移和侵袭的具体机制。

材料与方法

实验采用RA-FLS细胞系。通过伤口愈合实验、Transwell实验以及高内涵细胞成像系统评估细胞运动性。通过细胞骨架免疫荧光染色和透射电子显微镜(TEM)观察细胞骨架重塑。网络药理学预测雷公藤甲素的靶点。通过定量实时PCR和蛋白质印迹法检测RhoA/Rho相关激酶信号通路。采用分子对接和分子动力学模拟验证雷公藤甲素与RhoA/Rho相关激酶的相互作用。

结果

TPL显著抑制RA-FLS细胞运动性,并减少RA-FLS的位移和累积距离。细胞骨架染色实验和TEM观察显示TPL处理后细胞骨架重塑。网络药理学预测筛选出45个与TPL通过细胞骨架干预RA相关的靶点,包括TNF、KRAS、ESR1、RHOA、MAPK3和CASP3。在RhoA/Rho相关激酶信号通路中,TPL处理抑制RhoA、Rock和Limk的蛋白表达及磷酸化。TPL可进入RhoA、Rock1和Rock2靶蛋白结合域并具有稳定的结合活性,且可能导致与分子功能相关的Rock1构象变化。

结论

TPL通过作用于RhoA/Rho相关激酶信号通路调节肌动蛋白细胞骨架重塑,从而抑制RA-FLS的运动性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8c/12003270/3426d849589a/fphar-16-1545514-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验