Suppr超能文献

基于串联残差神经网络的谷霍尔光子拓扑绝缘体的逆设计

Inverse design of a valley-Hall photonic topological insulator based on tandem residual neural networks.

作者信息

Wang Bing-Jiang, Zhang Le, Wang Ben-Xin, Zhang Dong-Ping, Xie Ya-Guang, Cai Jin-Hui

机构信息

Centre for THz Research, College of Information Engineering, China Jiliang University, Hangzhou 310018, China.

School of Science, Jiangnan University, Wuxi 214122, China.

出版信息

iScience. 2025 Mar 22;28(4):112276. doi: 10.1016/j.isci.2025.112276. eCollection 2025 Apr 18.

Abstract

A hollow triangular rod-type valley-Hall photonic topological insulator is proposed, and two tandem residual deep neural networks are built for multimodal inverse design of the structure. One of them is a tandem multilayer perceptron, and the other is a composite tandem network based on variational auto-encoder. The former is used to inversely infer the value of the structural sizes, and the latter is used to predict the structural image of the lattice from demanded design targets. Residual connections are included in both networks to speed up the training convergence as well as avoid vanishing gradient problem. Based on an arbitrary inversely designed lattice, domain walls between two photonic topological insulators with different topology are constructed, and full-wave simulations on the transmission properties are conducted. Numerical results show that robust topologically protected wave propagation is supported along the domain wall with little backscattering, demonstrating that the proposed methods are valid.

摘要

提出了一种空心三角形杆型谷霍尔光子拓扑绝缘体,并构建了两个串联的残差深度神经网络用于该结构的多模态逆向设计。其中一个是串联多层感知器,另一个是基于变分自编码器的复合串联网络。前者用于逆向推断结构尺寸的值,后者用于根据所需的设计目标预测晶格的结构图像。两个网络都包含残差连接,以加速训练收敛并避免梯度消失问题。基于任意逆向设计的晶格,构建了具有不同拓扑结构的两个光子拓扑绝缘体之间的畴壁,并对传输特性进行了全波模拟。数值结果表明,沿畴壁支持稳健的拓扑保护波传播,且背向散射很小,这表明所提出的方法是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c566/12005334/310145d869cf/fx1.jpg

相似文献

1
Inverse design of a valley-Hall photonic topological insulator based on tandem residual neural networks.
iScience. 2025 Mar 22;28(4):112276. doi: 10.1016/j.isci.2025.112276. eCollection 2025 Apr 18.
2
Robust topologically protected transport in photonic crystals at telecommunication wavelengths.
Nat Nanotechnol. 2019 Jan;14(1):31-34. doi: 10.1038/s41565-018-0297-6. Epub 2018 Nov 12.
3
Direct observation of terahertz topological valley transport.
Opt Express. 2022 Apr 25;30(9):14839-14850. doi: 10.1364/OE.454750.
4
Phononic topological insulators based on six-petal holey silicon structures.
Sci Rep. 2019 Feb 12;9(1):1805. doi: 10.1038/s41598-018-38387-5.
5
Topological photonic crystal biosensor with valley edge modes based on a silicon-on-insulator slab.
Opt Express. 2022 Mar 28;30(7):10792-10801. doi: 10.1364/OE.443907.
6
Hybrid topological photonic crystals.
Nat Commun. 2023 Jul 25;14(1):4457. doi: 10.1038/s41467-023-40172-6.
7
Topologically Protected Valley-Dependent Quantum Photonic Circuits.
Phys Rev Lett. 2021 Jun 11;126(23):230503. doi: 10.1103/PhysRevLett.126.230503.
8
Photonic Floquet topological insulators.
Nature. 2013 Apr 11;496(7444):196-200. doi: 10.1038/nature12066.
9
Topological Refraction in Kagome Split-Ring Photonic Insulators.
Nanomaterials (Basel). 2022 Apr 28;12(9):1493. doi: 10.3390/nano12091493.
10
Photonic topological insulator induced by a dislocation in three dimensions.
Nature. 2022 Sep;609(7929):931-935. doi: 10.1038/s41586-022-05129-7. Epub 2022 Sep 28.

本文引用的文献

2
Tackling Photonic Inverse Design with Machine Learning.
Adv Sci (Weinh). 2021 Jan 7;8(5):2002923. doi: 10.1002/advs.202002923. eCollection 2021 Mar.
3
Mapping the design space of photonic topological states via deep learning.
Opt Express. 2020 Sep 14;28(19):27893-27902. doi: 10.1364/OE.398926.
4
Higher-order quantum spin Hall effect in a photonic crystal.
Nat Commun. 2020 Jul 28;11(1):3768. doi: 10.1038/s41467-020-17593-8.
5
Observation of Protected Photonic Edge States Induced by Real-Space Topological Lattice Defects.
Phys Rev Lett. 2020 Jun 19;124(24):243602. doi: 10.1103/PhysRevLett.124.243602.
6
Electrically pumped topological laser with valley edge modes.
Nature. 2020 Feb;578(7794):246-250. doi: 10.1038/s41586-020-1981-x. Epub 2020 Feb 12.
7
Inverse design of self-assembling colloidal crystals with omnidirectional photonic bandgaps.
Soft Matter. 2019 Nov 21;15(43):8808-8826. doi: 10.1039/c9sm01500k. Epub 2019 Oct 11.
8
Anomalous Quantum Hall Effect of Light in Bloch-Wave Modulated Photonic Crystals.
Phys Rev Lett. 2019 Jun 14;122(23):233904. doi: 10.1103/PhysRevLett.122.233904.
9
A silicon-on-insulator slab for topological valley transport.
Nat Commun. 2019 Feb 20;10(1):872. doi: 10.1038/s41467-019-08881-z.
10
Optimization of photonic crystal nanocavities based on deep learning.
Opt Express. 2018 Dec 10;26(25):32704-32717. doi: 10.1364/OE.26.032704.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验