Suppr超能文献

用机器学习解决光子逆设计问题。

Tackling Photonic Inverse Design with Machine Learning.

作者信息

Liu Zhaocheng, Zhu Dayu, Raju Lakshmi, Cai Wenshan

机构信息

School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta GA 30332 USA.

School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA.

出版信息

Adv Sci (Weinh). 2021 Jan 7;8(5):2002923. doi: 10.1002/advs.202002923. eCollection 2021 Mar.

Abstract

Machine learning, as a study of algorithms that automate prediction and decision-making based on complex data, has become one of the most effective tools in the study of artificial intelligence. In recent years, scientific communities have been gradually merging data-driven approaches with research, enabling dramatic progress in revealing underlying mechanisms, predicting essential properties, and discovering unconventional phenomena. It is becoming an indispensable tool in the fields of, for instance, quantum physics, organic chemistry, and medical imaging. Very recently, machine learning has been adopted in the research of photonics and optics as an alternative approach to address the inverse design problem. In this report, the fast advances of machine-learning-enabled photonic design strategies in the past few years are summarized. In particular, deep learning methods, a subset of machine learning algorithms, dealing with intractable high degrees-of-freedom structure design are focused upon.

摘要

机器学习作为一门研究基于复杂数据实现自动化预测和决策的算法的学科,已成为人工智能研究中最有效的工具之一。近年来,科学界一直在逐步将数据驱动方法与研究相结合,在揭示潜在机制、预测基本性质和发现非常规现象方面取得了显著进展。它正成为量子物理学、有机化学和医学成像等领域不可或缺的工具。最近,机器学习已被应用于光子学和光学研究,作为解决逆向设计问题的一种替代方法。在本报告中,总结了过去几年中基于机器学习的光子设计策略的快速进展。特别关注深度学习方法,这是机器学习算法的一个子集,用于处理棘手的高自由度结构设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b48/7927633/9019fc560572/ADVS-8-2002923-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验