Suppr超能文献

负载锂皂石纳米粘土的微凝胶悬浮液作为骨生成的支持基质。

Laponite nanoclay loaded microgel suspensions as supportive matrices for osteogenesis.

作者信息

Jalandhra Gagan K, Hung Tzong-Tyng, Kilian Kristopher A

机构信息

School of Materials Science and Engineering, UNSW Sydney, Sydney NSW 2052.

Australian Centre for NanoMedicine, UNSW Sydney, Sydney NSW 2052.

出版信息

Adv Nanobiomed Res. 2024 Oct;4(10). doi: 10.1002/anbr.202400024. Epub 2024 Sep 11.

Abstract

Microscale carriers have emerged as promising materials for nurturing cell growth and as delivery vehicles for regenerative therapies. Carriers based on hydrogels have proved advantageous, where "microgels" can be formulated to have a broad range of properties to guide the behavior of adherent cells. Here we demonstrate the fabrication of osteogenic microgels through incorporation of laponite nanoclays. Forming a jammed suspension provides a scaffolding where cells can adhere to the surface of the microgels, with pathways for migration and proliferation fostered by the interstitial volume. By varying the content and type of laponite-RD and XLG-the degree of osteogenesis can be tuned in embedded populations of adipose derived stem cells (ADSCs). The nano- micro-structured composite materials enhance osteogenesis at the transcript and protein level, leading to increased deposition of bone minerals and an increase in the compressive modulus of the assembled scaffold. Together, these microgel suspensions are promising materials for encouraging osteogenesis with scope for delivery via syringe injection and stabilization to bone-mimetic mechanical properties after matrix deposition.

摘要

微尺度载体已成为用于促进细胞生长的有前景的材料以及再生疗法的递送载体。基于水凝胶的载体已证明具有优势,其中“微凝胶”可以被制备成具有广泛的特性以引导贴壁细胞的行为。在这里,我们展示了通过掺入锂皂石纳米粘土来制造成骨微凝胶。形成一种堵塞悬浮液提供了一个支架,细胞可以附着在微凝胶的表面,间隙体积促进了迁移和增殖的途径。通过改变锂皂石-RD和XLG的含量和类型,可以在脂肪来源干细胞(ADSCs)的嵌入群体中调节成骨程度。这种纳米-微结构复合材料在转录和蛋白质水平上增强了成骨作用,导致骨矿物质沉积增加以及组装支架的压缩模量增加。总之,这些微凝胶悬浮液是用于促进成骨的有前景的材料,具有通过注射器注射递送的可能性以及在基质沉积后稳定到仿骨机械性能的潜力。

相似文献

1
Laponite nanoclay loaded microgel suspensions as supportive matrices for osteogenesis.
Adv Nanobiomed Res. 2024 Oct;4(10). doi: 10.1002/anbr.202400024. Epub 2024 Sep 11.
2
In situ formation of osteochondral interfaces through "bone-ink" printing in tailored microgel suspensions.
Acta Biomater. 2023 Jan 15;156:75-87. doi: 10.1016/j.actbio.2022.08.052. Epub 2022 Aug 30.
4
Cell-Laden Gradient Microgel Suspensions for Spatial Control of Differentiation During Biofabrication.
Adv Healthc Mater. 2022 Dec;11(24):e2201122. doi: 10.1002/adhm.202201122. Epub 2022 Aug 15.
5
Interplay of Hydrogel Composition and Geometry on Human Mesenchymal Stem Cell Osteogenesis.
Biomacromolecules. 2020 Dec 14;21(12):5323-5335. doi: 10.1021/acs.biomac.0c01408. Epub 2020 Nov 25.
6
Effects of pH and thermally sensitive hybrid gels on osteogenic differentiation of mesenchymal stem cells.
J Biomater Appl. 2015 Apr;29(9):1272-83. doi: 10.1177/0885328214557904. Epub 2014 Oct 30.
7
Self-Assembling Nanoclay Diffusion Gels for Bioactive Osteogenic Microenvironments.
Adv Healthc Mater. 2018 Aug;7(15):e1800331. doi: 10.1002/adhm.201800331. Epub 2018 Jun 17.
8
Supramolecular Hydrogels Based on Nanoclay and Guanidine-Rich Chitosan: Injectable and Moldable Osteoinductive Carriers.
ACS Appl Mater Interfaces. 2020 Apr 8;12(14):16088-16096. doi: 10.1021/acsami.0c01241. Epub 2020 Mar 24.
9
Influence of Microgel and Interstitial Matrix Compositions on Granular Hydrogel Composite Properties.
Adv Sci (Weinh). 2023 Apr;10(10):e2206117. doi: 10.1002/advs.202206117. Epub 2023 Jan 30.
10
Influence of Microgel Fabrication Technique on Granular Hydrogel Properties.
ACS Biomater Sci Eng. 2021 Sep 13;7(9):4269-4281. doi: 10.1021/acsbiomaterials.0c01612. Epub 2021 Feb 16.

本文引用的文献

1
Cytoskeletal rearrangement precedes nucleolar remodeling during adipogenesis.
Commun Biol. 2024 Apr 15;7(1):458. doi: 10.1038/s42003-024-06153-1.
2
Suspension bath bioprinting and maturation of anisotropic meniscal constructs.
Biofabrication. 2023 Apr 12;15(3). doi: 10.1088/1758-5090/acc3c3.
4
In situ formation of osteochondral interfaces through "bone-ink" printing in tailored microgel suspensions.
Acta Biomater. 2023 Jan 15;156:75-87. doi: 10.1016/j.actbio.2022.08.052. Epub 2022 Aug 30.
5
A novel porous granular scaffold for the promotion of trabecular bone repair by time-dependent alteration of morphology.
Biomater Adv. 2022 May;136:212777. doi: 10.1016/j.bioadv.2022.212777. Epub 2022 Mar 29.
6
A 3D bioprinted nano-laponite hydrogel construct promotes osteogenesis by activating PI3K/AKT signaling pathway.
Mater Today Bio. 2022 Jul 1;16:100342. doi: 10.1016/j.mtbio.2022.100342. eCollection 2022 Dec.
8
Laponite-Based Nanomaterials for Drug Delivery.
Adv Healthc Mater. 2022 Apr;11(7):e2102054. doi: 10.1002/adhm.202102054. Epub 2022 Feb 4.
9
Heterotypic tumor models through freeform printing into photostabilized granular microgels.
Biomater Sci. 2021 Jun 15;9(12):4496-4509. doi: 10.1039/d1bm00574j.
10
The role of lithium in the osteogenic bioactivity of clay nanoparticles.
Biomater Sci. 2021 Apr 21;9(8):3150-3161. doi: 10.1039/d0bm01444c. Epub 2021 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验