Suppr超能文献

悬浮浴生物打印和各向异性半月板构建体的成熟。

Suspension bath bioprinting and maturation of anisotropic meniscal constructs.

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America.

McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.

出版信息

Biofabrication. 2023 Apr 12;15(3). doi: 10.1088/1758-5090/acc3c3.

Abstract

Due to limited intrinsic healing capacity of the meniscus, meniscal injuries pose a significant clinical challenge. The most common method for treatment of damaged meniscal tissues, meniscectomy, leads to improper loading within the knee joint, which can increase the risk of osteoarthritis. Thus, there is a clinical need for the development of constructs for meniscal repair that better replicate meniscal tissue organization to improve load distributions and function over time. Advanced three-dimensional bioprinting technologies such as suspension bath bioprinting provide some key advantages, such as the ability to support the fabrication of complex structures using non-viscous bioinks. In this work, the suspension bath printing process is utilized to print anisotropic constructs with a unique bioink that contains embedded hydrogel fibers that align via shear stresses during printing. Constructs with and without fibers are printed and then cultured for up to 56 din a custom clamping system. Printed constructs with fibers demonstrate increased cell and collagen alignment, as well as enhanced tensile moduli when compared to constructs printed without fibers. This work advances the use of biofabrication to develop anisotropic constructs that can be utilized for the repair of meniscal tissue.

摘要

由于半月板的内在愈合能力有限,半月板损伤是一个重大的临床挑战。治疗受损半月板组织最常见的方法是半月板切除术,这会导致膝关节内的负荷不当,从而增加骨关节炎的风险。因此,临床上需要开发用于半月板修复的构建体,这些构建体更好地复制半月板组织的结构,以改善随着时间的推移的负荷分布和功能。先进的三维生物打印技术,如悬浮浴生物打印,提供了一些关键优势,例如能够使用非粘性生物墨水制造复杂结构的能力。在这项工作中,悬浮浴打印工艺用于打印具有独特生物墨水的各向异性构建体,该生物墨水中嵌入了水凝胶纤维,在打印过程中通过剪切应力进行排列。打印有纤维和没有纤维的构建体,并在定制的夹紧系统中培养长达 56 天。与没有纤维打印的构建体相比,带有纤维的打印构建体显示出细胞和胶原蛋白排列的增加,以及拉伸模量的提高。这项工作推进了生物制造的使用,以开发可用于修复半月板组织的各向异性构建体。

相似文献

1
Suspension bath bioprinting and maturation of anisotropic meniscal constructs.
Biofabrication. 2023 Apr 12;15(3). doi: 10.1088/1758-5090/acc3c3.
4
Bioprinting of structurally organized meniscal tissue within anisotropic melt electrowritten scaffolds.
Acta Biomater. 2023 Mar 1;158:216-227. doi: 10.1016/j.actbio.2022.12.047. Epub 2023 Jan 11.
5
Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
ACS Appl Mater Interfaces. 2020 Feb 19;12(7):7855-7868. doi: 10.1021/acsami.9b15451. Epub 2020 Feb 10.
6
Advancing bioinks for 3D bioprinting using reactive fillers: A review.
Acta Biomater. 2020 Sep 1;113:1-22. doi: 10.1016/j.actbio.2020.06.040. Epub 2020 Jul 2.
7
Tunable and Compartmentalized Multimaterial Bioprinting for Complex Living Tissue Constructs.
ACS Appl Mater Interfaces. 2022 Nov 23;14(46):51602-51618. doi: 10.1021/acsami.2c12585. Epub 2022 Nov 8.
8
3D cell-printing of biocompatible and functional meniscus constructs using meniscus-derived bioink.
Biomaterials. 2021 Jan;267:120466. doi: 10.1016/j.biomaterials.2020.120466. Epub 2020 Oct 20.

引用本文的文献

1
Biofabrication in suspension media-a decade of advances.
Biofabrication. 2025 Jun 3;17(3):033001. doi: 10.1088/1758-5090/addc42.
2
Laponite nanoclay loaded microgel suspensions as supportive matrices for osteogenesis.
Adv Nanobiomed Res. 2024 Oct;4(10). doi: 10.1002/anbr.202400024. Epub 2024 Sep 11.
3
A Versatile Method to Produce Monomodal Nano- to Micro-Fiber Fragments as Fillers for Biofabrication.
Small Methods. 2025 Mar;9(3):e2401060. doi: 10.1002/smtd.202401060. Epub 2024 Dec 17.
6
Embedded 3D bioprinting - An emerging strategy to fabricate biomimetic & large vascularized tissue constructs.
Bioact Mater. 2023 Oct 21;32:356-384. doi: 10.1016/j.bioactmat.2023.10.012. eCollection 2024 Feb.
7
Cell Count and Cell Density Decrease as Age Increases in Cadaveric Pediatric Medial Menisci.
Arthrosc Sports Med Rehabil. 2023 Oct 15;5(6):100795. doi: 10.1016/j.asmr.2023.100795. eCollection 2023 Dec.

本文引用的文献

1
Programming Cellular Alignment in Engineered Cardiac Tissue via Bioprinting Anisotropic Organ Building Blocks.
Adv Mater. 2022 Jul;34(26):e2200217. doi: 10.1002/adma.202200217. Epub 2022 May 25.
3
Programmable and contractile materials through cell encapsulation in fibrous hydrogel assemblies.
Sci Adv. 2021 Nov 12;7(46):eabi8157. doi: 10.1126/sciadv.abi8157. Epub 2021 Nov 10.
6
Meniscal repair: The current state and recent advances in augmentation.
J Orthop Res. 2021 Jul;39(7):1368-1382. doi: 10.1002/jor.25021. Epub 2021 Mar 19.
8
Combining TGF-β1 and Mechanical Anchoring to Enhance Collagen Fiber Formation and Alignment in Tissue-Engineered Menisci.
ACS Biomater Sci Eng. 2021 Apr 12;7(4):1608-1620. doi: 10.1021/acsbiomaterials.0c01791. Epub 2021 Feb 19.
9
Multifarious Fabrication Approaches of Producing Aligned Collagen Scaffolds for Tissue Engineering Applications.
ACS Biomater Sci Eng. 2020 Feb 10;6(2):779-797. doi: 10.1021/acsbiomaterials.9b01225. Epub 2020 Jan 14.
10
Control of Matrix Stiffness Using Methacrylate-Gelatin Hydrogels for a Macrophage-Mediated Inflammatory Response.
ACS Biomater Sci Eng. 2020 May 11;6(5):3091-3102. doi: 10.1021/acsbiomaterials.0c00295. Epub 2020 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验