Tas Jeanette, Sick Cristina Cerinza, Kulyk Caterina, Ianosi Bogdan-Andrei, Spiandorello Patrizia, Vosko Milan R, Sonnberger Michael, Bergmann Melanie, Helbok Raimund
Department of Neurology, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria.
Neurology, Clinical Research Institute of Neuroscience, Johannes Kepler University Linz, Kepler University Hospital, Linz, Linz, Austria.
BMJ Neurol Open. 2025 Apr 14;7(1):e000973. doi: 10.1136/bmjno-2024-000973. eCollection 2025.
Chalos recently developed the MR PREDICTS@24H model to predict 90 days functional outcomes in ischaemic stroke patients following endovascular treatment (EVT). We aimed to validate this model in the real-world situation of endovascular stroke patients admitted to a tertiary care hospital.
We conducted a retrospective cohort study including a selection of adult (≥18 years old) ischaemic stroke patients eligible for EVT in a tretiary care center between January 2014 and May 2023. Model performance was assessed using C-statistics for discrimination and calibration plots for goodness of fit.
Among 254 eligible stroke patients, the model demonstrates a strong discriminatory performance for both functional independence (C-statistics 0.92; 95% CI 0.88 to 0.95) and survival (C-statistic 0.83; 95% CI 0.76 to 0.90). Compared with the MR CLEAN Registry, no significant differences were observed in discriminative ability (functional independence: z-score 0.54, p=0.590; survival: z-score -1.66, p=0.0962).
The MR PREDICTS@24H model reliably predicts outcomes in a real-world setting and may help clinicians in the communication with patient relatives.
Chalos最近开发了MR PREDICTS@24H模型,以预测缺血性中风患者血管内治疗(EVT)后90天的功能结局。我们旨在在一家三级护理医院收治的血管内中风患者的实际情况中验证该模型。
我们进行了一项回顾性队列研究,纳入了2014年1月至2023年5月期间在一家三级护理中心符合EVT条件的成年(≥18岁)缺血性中风患者。使用C统计量评估模型的辨别能力,使用校准图评估拟合优度。
在254例符合条件的中风患者中,该模型在功能独立性(C统计量0.92;95%CI 0.88至0.95)和生存率(C统计量0.83;95%CI 0.76至0.90)方面均表现出很强的辨别性能。与MR CLEAN注册中心相比,在辨别能力方面未观察到显著差异(功能独立性:z评分0.54,p = 0.590;生存率:z评分 -1.66,p = 0.0962)。
MR PREDICTS@24H模型在实际环境中能够可靠地预测结局,并可能有助于临床医生与患者家属进行沟通。