Aballo Timothy J, Bae Jiyoung, Paltzer Wyatt G, Chapman Emily A, Perciaccante Andrew J, Pergande Melissa R, Salamon Rebecca J, Nuttall Dakota J, Mann Morgan W, Ge Ying, Mahmoud Ahmed I
Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA.
Cardiovasc Res. 2025 Apr 18. doi: 10.1093/cvr/cvaf069.
Adult mammalian cardiomyocytes have limited regenerative potential, and after myocardial infarction (MI), injured cardiac tissue is replaced with fibrotic scar. In contrast, the neonatal mouse heart possesses a regenerative capacity governed by cardiomyocyte proliferation; however, a metabolic switch from glycolysis to fatty acid oxidation during postnatal development results in loss of this regenerative capacity. Interestingly, a sarcomere isoform switch also takes place during postnatal development where slow skeletal troponin I (ssTnI) is replaced with cardiac troponin I (cTnI). It remains unclear whether there is an interplay between sarcomere isoform switching, cardiac metabolism, and regeneration.
In this study, we employ proteomics, metabolomics and lipidomics, transgenic mice, MI models, and histological analysis to delineate the molecular and sarcomeric transitions that occur during cardiac maturation and regeneration. First, we utilize integrated quantitative bottom-up and top-down proteomics to comprehensively define the proteomic and sarcomeric landscape during postnatal heart maturation. By employing a cardiomyocyte-specific ssTnI transgenic mouse model, we discovered that ssTnI overexpression increased cardiomyocyte proliferation and the cardiac regenerative capacity of the postnatal heart following MI compared to control mice by histological analysis. Our global proteomic analysis of ssTnI transgenic mice following MI reveals that ssTnI overexpression induces a significant shift in the cardiac proteomic landscape. Additionally, our lipidomic analysis demonstrated a significant upregulation of lipid species in the transgenic mice. This proteomic shift is characterized by an upregulation of key proteins involved in glycolytic metabolism.
Collectively, our data suggest that the postnatal TnI isoform switch may play a role in the metabolic shift from glycolysis to fatty acid oxidation during postnatal maturation. This underscores the significance of a sarcomere-metabolism axis during cardiomyocyte proliferation and heart regeneration.
成年哺乳动物心肌细胞的再生潜力有限,心肌梗死后,受损的心脏组织会被纤维化瘢痕取代。相比之下,新生小鼠心脏具有由心肌细胞增殖控制的再生能力;然而,出生后发育过程中从糖酵解到脂肪酸氧化的代谢转变导致这种再生能力丧失。有趣的是,出生后发育过程中也会发生肌节亚型转换,其中慢肌骨骼肌肌钙蛋白I(ssTnI)被心肌肌钙蛋白I(cTnI)取代。目前尚不清楚肌节亚型转换、心脏代谢和再生之间是否存在相互作用。
在本研究中,我们采用蛋白质组学、代谢组学和脂质组学、转基因小鼠、心肌梗死模型和组织学分析来描绘心脏成熟和再生过程中发生的分子和肌节转变。首先,我们利用整合的定量自下而上和自上而下蛋白质组学来全面定义出生后心脏成熟过程中的蛋白质组和肌节格局。通过使用心肌细胞特异性ssTnI转基因小鼠模型,我们发现与对照小鼠相比,通过组织学分析,ssTnI过表达增加了心肌梗死后出生后心脏的心肌细胞增殖和心脏再生能力。我们对心肌梗死后ssTnI转基因小鼠的全球蛋白质组分析表明,ssTnI过表达会导致心脏蛋白质组格局发生显著变化。此外,我们的脂质组分析表明转基因小鼠中脂质种类显著上调。这种蛋白质组变化的特征是参与糖酵解代谢的关键蛋白上调。
总体而言,我们的数据表明出生后TnI亚型转换可能在出生后成熟过程中从糖酵解到脂肪酸氧化的代谢转变中起作用。这突出了肌节-代谢轴在心肌细胞增殖和心脏再生过程中的重要性。