Chae Heonseung, Kim Jongwoon, Han Chang-Soo
School of Mechanical Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
Small. 2025 May;21(21):e2412071. doi: 10.1002/smll.202412071. Epub 2025 Apr 18.
2D nanofluidic membranes, with their nano-structured lamella architecture, offer effective control over ion transport, making them promising candidates for osmotic energy harvesting based on electrolyte concentration gradients. However, low-concentration electrolytes increase internal resistance, which leads to reduced output power, thereby limiting the practical application of nanofluidic energy generators. In this study, a high-power nanofluidic energy generator is proposed by replacing the low-concentration electrolytes with the high-concentration divalent electrolytes. Here, oppositely charged graphene oxide (GO)-polyelectrolytes composite membranes produce a high membrane potential by selectively allowing the transport of a single ionic species among various ions, such as biological ion channels. By modifying GO with polyelectrolytes to increase surface charge density and applying additional mild heating to adjust the interlayer spacing, ion sieving properties of the GO membranes are enhanced. As a result, the cation-selective membrane achieved a K⁺/Mg⁺ selectivity ratio of 41.6, while the anion-selective membrane attained a Cl⁻/SO₄⁻ selectivity ratio of 30.8. The energy device using the GO-polyelectrolyte membrane pairs achieved a power density of 5.49 W m⁻ under a 50-fold concentration gradient of NaCl, which is further improved to 9.48 W m⁻ in a system utilizing high-concentration divalent ions.
二维纳米流体膜具有纳米结构的薄片结构,能够有效控制离子传输,使其成为基于电解质浓度梯度进行渗透能收集的有潜力的候选材料。然而,低浓度电解质会增加内阻,导致输出功率降低,从而限制了纳米流体能量发生器的实际应用。在本研究中,通过用高浓度二价电解质替代低浓度电解质,提出了一种高功率纳米流体能量发生器。在此,带相反电荷的氧化石墨烯(GO)-聚电解质复合膜通过选择性地允许单一离子物种在各种离子(如生物离子通道)之间传输,产生高膜电位。通过用聚电解质修饰GO以增加表面电荷密度,并施加额外的温和加热来调节层间距,GO膜的离子筛分性能得到增强。结果,阳离子选择性膜的K⁺/Mg⁺选择性比达到41.6,而阴离子选择性膜的Cl⁻/SO₄⁻选择性比达到30.8。使用GO-聚电解质膜对的能量装置在50倍NaCl浓度梯度下实现了5.49 W m⁻²的功率密度,在使用高浓度二价离子的系统中进一步提高到9.48 W m⁻²。