Matijosius Tadas, Bakute Neringa, Padgurskas Juozas, Selskiene Ausra, Zarkov Aleksej, Griguceviciene Asta, Kavaliauskaite Justina, Stirke Arunas, Asadauskas Svajus Joseph
Faculty of Engineering, Vytautas Magnus University (VMU), Studentu 15, Akademija, Kaunas LT 53362, Lithuania.
Department of Chemical Engineering and Technology, State Research Institute Center for Physical Sciences and Technology, Sauletekio 3, Vilnius LT 10257, Lithuania.
ACS Appl Mater Interfaces. 2025 Apr 30;17(17):24901-24917. doi: 10.1021/acsami.5c00532. Epub 2025 Apr 18.
Recent advances in ceramic materials, particularly porous alumina (AlO), have significantly enhanced the safety and efficacy of medical implants by improving biocompatibility and modulating cellular behavior for biomedical applications. Variations in the surface structure and chemical composition of porous AlO promote different biological responses and coating stability, underscoring the need for further biological and corrosion research. Traditional methods for producing alumina ceramics from powder are expensive, time-consuming, and limited in their ability to create complex shapes and large structures due to the brittleness of alumina. This study evaluates the biocompatibility of bioceramic-coated aluminum (Al) alloy 6082 as a lightweight and cost-effective alternative for bone osteosynthesis plates. AlO coatings were achieved through anodization using phosphoric and sulfuric acids. The untreated and anodized alloys were analyzed for chemical stability and biocompatibility and compared with medical-grade titanium alloy. All specimens exhibited excellent biocompatibility, demonstrating high adhesion and viability of the fibroblast cell line. Corrosion resistance and metal ion release were assessed in simulated body fluid, with all specimens effectively suppressing the release of Fe and toxic Al ions. The untreated Al alloy exhibited a higher release of Mn ions than the coated specimens. Notably, the bioceramic coating obtained in sulfuric acid demonstrated 3 orders of magnitude higher corrosion resistance, indicating its potential suitability for biomedical applications. By addressing the limitations of traditional alumina ceramics, our approach enables the fabrication of products in diverse sizes and shapes, offering a practical solution for creating customized biomedical implants.
陶瓷材料,特别是多孔氧化铝(AlO)的最新进展,通过改善生物相容性和调节细胞行为以用于生物医学应用,显著提高了医用植入物的安全性和有效性。多孔AlO表面结构和化学成分的变化会促进不同的生物反应和涂层稳定性,这突出了进一步开展生物学和腐蚀研究的必要性。传统的由粉末制备氧化铝陶瓷的方法成本高、耗时,并且由于氧化铝的脆性,在制造复杂形状和大型结构方面能力有限。本研究评估了生物陶瓷涂层铝合金6082作为骨接骨板的轻质且经济高效替代品的生物相容性。通过使用磷酸和硫酸进行阳极氧化获得AlO涂层。对未处理和阳极氧化的合金进行化学稳定性和生物相容性分析,并与医用级钛合金进行比较。所有试样均表现出优异的生物相容性,成纤维细胞系具有高附着力和活力。在模拟体液中评估耐腐蚀性和金属离子释放情况,所有试样均有效抑制了Fe和有毒Al离子的释放。未处理的铝合金比涂层试样表现出更高的Mn离子释放量。值得注意的是,在硫酸中获得的生物陶瓷涂层表现出高3个数量级的耐腐蚀性,表明其在生物医学应用中的潜在适用性。通过解决传统氧化铝陶瓷的局限性,我们的方法能够制造各种尺寸和形状的产品,为定制生物医学植入物提供了切实可行的解决方案。