Suppr超能文献

多源miRNA-疾病关联预测中的区间共享信息整合与假阴性关联减少

Interval-Shared Information Integration and False-Negative Association Reduction in Multi-Source MiRNA-Disease Association Prediction.

作者信息

Cui Qinghang, Guo Honglie, Cai Yueyi, Fei Yu, Wang Shunfang

出版信息

IEEE J Biomed Health Inform. 2025 Apr 18;PP. doi: 10.1109/JBHI.2025.3562617.

Abstract

Numerous studies have demonstrated that microRNAs (miRNAs) play crucial roles in the development and progression of various diseases, making the identification of miRNA-disease association (MDA) essential for understanding human disease etiology. While several computational models have been developed to predict MDAs, challenges persist-particularly the limited consideration of information interactions among multi-source similarities and the presence of "false-negative" associations in the original topology. To address these issues, we propose ISFNMDA, a model designed to infer potential MDAs by leveraging multi-view collaborative learning for feature extraction and optimizing association topology through graph structure momentum contrastive learning. Specifically, multi-source similarities of miRNAs and diseases are mapped into a unified feature space via encoders. The Pearson correlation coefficient is employed to derive pairwise constraints between nodes, facilitating information interactions and constructing interval-shared information constraints. Subsequently, an inference graph learner models the representations to generate an inferred graph topology. By maximizing mutual information between the inferred topology and the original "false-negative" associations through momentum contrastive learning, the model effectively reduces spurious correlations. The final comprehensive representations and optimized graph structure are then used to predict potential MDAs. Experimental results demonstrate that ISFNMDA outperforms existing methods, and case studies further validate its predictive capability.

摘要

大量研究表明,微小RNA(miRNA)在各种疾病的发生和发展中起着关键作用,因此识别miRNA与疾病的关联(MDA)对于理解人类疾病病因至关重要。虽然已经开发了几种计算模型来预测MDA,但挑战依然存在,特别是对多源相似性之间信息交互的考虑有限,以及原始拓扑结构中存在“假阴性”关联。为了解决这些问题,我们提出了ISFNMDA,这是一种通过利用多视图协同学习进行特征提取,并通过图结构动量对比学习优化关联拓扑来推断潜在MDA的模型。具体来说,miRNA和疾病的多源相似性通过编码器映射到统一的特征空间。使用皮尔逊相关系数来推导节点之间的成对约束,促进信息交互并构建区间共享信息约束。随后,推理图学习器对表示进行建模以生成推理图拓扑。通过动量对比学习最大化推理拓扑与原始“假阴性”关联之间的互信息,该模型有效地减少了虚假相关性。最后,利用最终的综合表示和优化的图结构来预测潜在的MDA。实验结果表明,ISFNMDA优于现有方法,案例研究进一步验证了其预测能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验