Li Zhangshanhao, Xu Minghao, Xia Yier, Yan Ziyun, Dai Jianyou, Hu Bingmeng, Feng Haizhao, Xu Sixing, Wang Xiaohong
School of Integrated Circuits, Tsinghua University, Beijing, 100084, China.
College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 430001, China.
Nat Commun. 2025 Apr 18;16(1):3704. doi: 10.1038/s41467-025-59015-7.
The prosperity of microelectronics has intensified the requirement for miniaturized power systems using capacitors with high capacity and broad frequency ranges. Electrochemical supercapacitors stand out with their superior capacitance density, surpassing traditional electrolytic capacitors by at least two orders of magnitude. However, the intrinsic slow ion dynamics of electrical double layer effects greatly limit supercapacitors characteristic frequency, constraining their applicability in microsystems. This work constructs a near-ideal micro electrochemical supercapacitor, featuring the monolayer graphene as a working electrode, to reveal the ceiling of electrochemical capacitance characteristic frequency. To address this limitation, we introduce a Hybrid Electrochemical Electrolytic Capacitor design, which asymmetrically coupling the electrochemical and dielectric effects. At low frequencies, the electrochemical segment provides sufficient capacity, while its electrolytic segment takes over at high frequencies, broadening the frequency range. Consequently, the hybrid design boasts considerable capacitance density across a broad frequency range. Employing our wafer-scale microfabrication techniques, we showcase a device, achieving a characteristic frequency of 44 kHz and a volume capacitance density of 800 . To demonstrate its practicality in microsystems, the device is integrated with a power management chip and buck circuit module, respectively, with only 2 % space usage compared to commercial electrolytic capacitor, achieving the same performance.
微电子技术的蓬勃发展,对采用高容量、宽频率范围电容器的小型化电源系统的需求日益增长。电化学超级电容器凭借其卓越的电容密度脱颖而出,比传统电解电容器至少高出两个数量级。然而,双电层效应固有的缓慢离子动力学极大地限制了超级电容器的特征频率,制约了它们在微系统中的应用。这项工作构建了一种近乎理想的微型电化学超级电容器,以单层石墨烯作为工作电极,旨在揭示电化学电容特征频率的上限。为解决这一限制,我们引入了一种混合电化学电解电容器设计,该设计将电化学效应和介电效应不对称地耦合在一起。在低频时,电化学部分提供足够的容量,而其电解部分在高频时发挥作用,拓宽了频率范围。因此,这种混合设计在很宽的频率范围内都具有相当可观的电容密度。利用我们的晶圆级微加工技术,我们展示了一种器件,其特征频率达到44kHz,体积电容密度为800 。为证明其在微系统中的实用性,该器件分别与电源管理芯片和降压电路模块集成,与商用电解电容器相比,空间占用仅为2%,却能实现相同的性能。