Karthikeyan Santhosh Kumar, Chandrashekar Darshan S, Sahai Snigdha, Shrestha Sadeep, Aneja Ritu, Singh Rajesh, Kleer Celina G, Kumar Sidharth, Qin Zhaohui S, Nakshatri Harikrishna, Manne Upender, Creighton Chad J, Varambally Sooryanarayana
Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA.
NPJ Breast Cancer. 2025 Apr 18;11(1):35. doi: 10.1038/s41523-025-00750-x.
Breast cancer (BCa), a leading malignancy among women, is characterized by morphological and molecular heterogeneity. While early-stage, hormone receptor, and HER2-positive BCa are treatable, triple-negative BCa and metastatic BCa remains largely untreatable. Advances in sequencing and proteomic technologies have improved our understanding of the molecular alterations that occur during BCa initiation and progression and enabled identification of subclass-specific biomarkers and therapeutic targets. Despite the availability of abundant omics data in public repositories, user-friendly tools for multi-omics data analysis and integration are scarce. To address this, we developed a comprehensive BCa data analysis platform called MammOnc-DB ( http://resource.path.uab.edu/MammOnc-Home.html ), comprising data from more than 20,000 BCa samples. MammOnc-DB facilitates hypothesis generation and testing, biomarker discovery, and therapeutic targets identification. The platform also includes pre- and post-treatment data, which can help users identify treatment resistance markers and support combination therapy strategies, offering researchers and clinicians a comprehensive tool for BCa data analysis and visualization.
乳腺癌(BCa)是女性中主要的恶性肿瘤,其特征在于形态学和分子异质性。虽然早期、激素受体阳性和HER2阳性的乳腺癌是可治疗的,但三阴性乳腺癌和转移性乳腺癌在很大程度上仍无法治疗。测序和蛋白质组学技术的进步增进了我们对乳腺癌发生和发展过程中分子改变的理解,并能够识别亚类特异性生物标志物和治疗靶点。尽管公共数据库中有大量的组学数据,但用于多组学数据分析和整合的用户友好型工具却很稀缺。为了解决这个问题,我们开发了一个名为MammOnc-DB的综合乳腺癌数据分析平台(http://resource.path.uab.edu/MammOnc-Home.html),该平台包含来自20000多个乳腺癌样本的数据。MammOnc-DB有助于提出假设和进行测试、发现生物标志物以及识别治疗靶点。该平台还包括治疗前和治疗后的数据,这可以帮助用户识别治疗抗性标志物并支持联合治疗策略,为研究人员和临床医生提供了一个用于乳腺癌数据分析和可视化的综合工具。