Suppr超能文献

MammOnc-DB,一个用于靶点发现的综合性乳腺癌数据分析平台。

MammOnc-DB, an integrative breast cancer data analysis platform for target discovery.

作者信息

Varambally Sooryanarayana, Karthikeyan Santhosh Kumar, Chandrashekar Darshan, Sahai Snigdha, Shrestha Sadeep, Aneja Ritu, Singh Rajesh, Kleer Celina, Kumar Sidharth, Qin Zhaohui, Nakshatri Harikrishna, Manne Upender, Creighton Chad

机构信息

University of Alabama at Birmingham.

UAB.

出版信息

Res Sq. 2024 Sep 26:rs.3.rs-4926362. doi: 10.21203/rs.3.rs-4926362/v1.

Abstract

Breast cancer (BCa) is one of the most common malignancies among women worldwide. It is a complex disease that is characterized by morphological and molecular heterogeneity. In the early stages of the disease, most BCa cases are treatable, particularly hormone receptor-positive and HER2-positive tumors. Unfortunately, triple-negative BCa and metastases to distant organs are largely untreatable with current medical interventions. Recent advances in sequencing and proteomic technologies have improved our understanding of the molecular changes that occur during breast cancer initiation and progression. In this era of precision medicine, researchers and clinicians aim to identify subclass-specific BCa biomarkers and develop new targets and drugs to guide treatment. Although vast amounts of omics data including single cell sequencing data, can be accessed through public repositories, there is a lack of user-friendly platforms that integrate information from multiple studies. Thus, to meet the need for a simple yet effective and integrative BCa tool for multi-omics data analysis and visualization, we developed a comprehensive BCa data analysis platform called MammOnc-DB (http://resource.path.uab.edu/MammOnc-Home.html), comprising data from more than 20,000 BCa samples. MammOnc-DB was developed to provide a unique resource for hypothesis generation and testing, as well as for the discovery of biomarkers and therapeutic targets. The platform also provides pre- and post-treatment data, which can help users identify treatment resistance markers and patient groups that may benefit from combination therapy.

摘要

乳腺癌(BCa)是全球女性中最常见的恶性肿瘤之一。它是一种复杂的疾病,具有形态学和分子异质性的特征。在疾病的早期阶段,大多数BCa病例是可治疗的,尤其是激素受体阳性和HER2阳性肿瘤。不幸的是,三阴性BCa以及远处器官转移在很大程度上无法通过当前的医学干预措施进行治疗。测序和蛋白质组学技术的最新进展提高了我们对乳腺癌发生和发展过程中发生的分子变化的理解。在这个精准医学时代,研究人员和临床医生旨在识别特定亚类的BCa生物标志物,并开发新的靶点和药物来指导治疗。尽管可以通过公共数据库获取大量的组学数据,包括单细胞测序数据,但缺乏整合多项研究信息的用户友好型平台。因此,为了满足对一个简单但有效且集成的BCa多组学数据分析和可视化工具的需求,我们开发了一个名为MammOnc-DB(http://resource.path.uab.edu/MammOnc-Home.html)的综合BCa数据分析平台,该平台包含来自20000多个BCa样本的数据。开发MammOnc-DB是为了提供一个用于假设生成和测试以及发现生物标志物和治疗靶点的独特资源。该平台还提供治疗前和治疗后的数据,这可以帮助用户识别治疗抗性标志物以及可能从联合治疗中受益的患者群体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebae/11469468/6bde0b678463/nihpp-rs4926362v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验