Liu Congcong, Jia Shufeng, Yang Tingzhou, Liu Jiabing, Zhou Xinrui, Wang Zhifeng, Dong Haochen, Shi Zhenjia, Zhang Yongguang, Chen Zhongwei
School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China.
Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
Angew Chem Int Ed Engl. 2025 Jun 24;64(26):e202505938. doi: 10.1002/anie.202505938. Epub 2025 Apr 26.
Identifying ultrathin and flexible solid-state electrolytes with high ionic conductivity and low interfacial resistance is crucial for scale-up production of solid-state sodium (Na) metal batteries (SSMBs). However, the challenges of poor processing scalability, insufficient intrinsic mechanical strength, and limited ionic transport capacity remain unaddressed. Herein, an ultrathin 9.7 µm solid-state electrolyte membrane featuring a dual-polymer entangled network is meticulously engineered through an arrayed multi-nozzle electrospinning technique with a swelling and hot pressing process using polyacrylonitrile and poly(ether-block-amide), which exhibits an exceptional voltage tolerance, enhanced tensile strength, and superior thermal stability. The soft ether oxygens segments in multiblock copolymers complex with Na to promote the rapid hopping transport of Na. Meanwhile, interconnected electronegative channels based on carbonyl and cyanogen groups serve as Na conduits to smooth ion fluctuations and accelerate Na selective conduction simultaneously. The obtained inorganic-organic composite solid electrolyte interface with the improved mechanical strength of ultrathin solid-state electrolytes effectively suppresses Na dendrites with low overpotential over 500 h. The solid-state cells paired with layered oxides deliver a capacity retention of over 91.1% between 25 °C and 65 °C, and assembled pouch cells exhibit impressive energy density over 100 cycles, showing great potential for large-scale application of ultrathin structure in the SSMBs.
识别具有高离子电导率和低界面电阻的超薄柔性固态电解质对于固态钠(Na)金属电池(SSMB)的规模化生产至关重要。然而,加工可扩展性差、固有机械强度不足和离子传输能力有限等挑战仍未得到解决。在此,通过阵列多喷嘴静电纺丝技术,结合使用聚丙烯腈和聚(醚嵌段酰胺)的溶胀和热压工艺,精心设计了一种具有双聚合物缠结网络的9.7 µm超薄固态电解质膜,该膜具有出色的耐压性、增强的拉伸强度和优异的热稳定性。多嵌段共聚物中的软醚氧链段与Na络合,促进Na的快速跳跃传输。同时,基于羰基和氰基的相互连接的负电通道作为Na的传导路径,可平滑离子波动并同时加速Na的选择性传导。所获得的具有改进机械强度的超薄固态电解质的无机-有机复合固体电解质界面,在500多小时内以低过电位有效抑制了Na枝晶。与层状氧化物配对的固态电池在25°C至65°C之间的容量保持率超过91.1%,组装的软包电池在100次循环中表现出令人印象深刻的能量密度,显示出超薄结构在SSMB中大规模应用的巨大潜力。