Huang Yanan, Yang Zhuo, Zhou Weicheng, Liu Liequan, Tu Chuanbao, Tang Mingyang, Xie Haijiao, Lu Yu, Yan Xu, Ding Zhihao, Li Xiaolong, Yang Tiannan, Sigov Alexander S, Huang Wei, Gao Lijun, Huang Cheng
Volta and DiPole Materials Labs, College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow Innovation Consortium for Intelligent Fibers and Wearable Technologies, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China.
International Joint Metacenter for Advanced Photonics and Electronics, Physics and Energy Department, School of Optical and Electronic Information, Suzhou City University, 1188 Wuzhong District, Suzhou, 215006, P. R. China.
Adv Sci (Weinh). 2025 Jul;12(28):e2416662. doi: 10.1002/advs.202416662. Epub 2025 Jun 23.
To address the issues of limited ionic conductivity and poor interface stability at room and low temperatures in solid-state electrolytes, a robust intrinsic ferroelectrolyte or nanoferroelectrolyte strategy for engineering solid-state flexible ferroelectric composite electrolytes utilizing strongly coupled intrinsic ion conducting 2D/2D sodium-rich anti-perovskite (NaRAP)/ferroelectric perovskite heterostructures is introduced. Herein, highly scalable PVDF-based metaferroelectrolytes with NaBaOCl/CaNaNbO (CNNO) nanosheets into a ferroelectric poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) matrix, through an in situ cross-linking and spontaneous bridging method, for compact solid-state sodium batteries (SSBs), are reported. Benefiting from unique well-dispersed 3D ferroelectric coupled network and the NaBaOCl/CNNO-induced PVDF-HFP ferroelectric β phase, the Na flux is regulated, thereby inhibiting Na dendrite growth at the interface. Notably, the optimized PH-5% NC metaferroelectrolyte exhibits rapid ion transport (1.11 × 10 S cm at 25 °C), a wide electrochemical window (> 4.8V), superior conformal mechanical compatibility, improved flexibility, good elasticity and flame retardancy. The solid-state NaV(PO)/PH-5% NC/Na batteries present a stable cycling performance (remaining 56.4 mAh g after 500 cycles at 1 C) even at 0 °C, potential for cost-effective, safe, stable and compact SSB energy storage over 600 Wh L, vastly surpassing 365 Wh L of the current commercial sodium-ion liquid-electrolyte batteries.
为了解决固态电解质在室温和低温下离子电导率有限以及界面稳定性差的问题,本文介绍了一种强大的本征铁电解质或纳米铁电解质策略,用于设计固态柔性铁电复合电解质,该策略利用强耦合的本征离子导电二维/二维富钠反钙钛矿(NaRAP)/铁电钙钛矿异质结构。在此,通过原位交联和自发桥接方法,将NaBaOCl/CaNaNbO (CNNO)纳米片引入铁电聚偏氟乙烯-共-六氟丙烯(PVDF-HFP)基体中,制备了用于紧凑型固态钠电池(SSB)的高度可扩展的基于PVDF的亚铁电解质。得益于独特的良好分散的三维铁电耦合网络以及NaBaOCl/CNNO诱导的PVDF-HFP铁电β相,Na通量得到调节,从而抑制了界面处Na枝晶的生长。值得注意的是,优化后的PH-5% NC亚铁电解质表现出快速的离子传输(25℃下为1.11×10 S cm)、宽电化学窗口(>4.8V)、优异的共形机械兼容性、改善的柔韧性、良好的弹性和阻燃性。固态NaV(PO)/PH-5% NC/Na电池即使在0℃时也具有稳定的循环性能(1C下500次循环后剩余56.4 mAh g),具有成本效益高、安全、稳定且紧凑的SSB储能潜力,超过600 Wh L,大大超过目前商用钠离子液体电解质电池的365 Wh L。