Worf Karolina, Matosin Natalie, Gerstner Nathalie, Fröhlich Anna S, Koller Anna C, Degenhardt Franziska, Thiele Holger, Rietschel Marcella, Udawela Madhara, Scarr Elizabeth, Dean Brian, Theis Fabian J, Mueller Nikola S, Knauer-Arloth Janine
Institute of Computational Biology, Helmholtz Center, Munich, Germany.
TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
Transl Psychiatry. 2025 Apr 19;15(1):153. doi: 10.1038/s41398-025-03366-8.
Bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia share genetic architecture, yet their molecular mechanisms remain elusive. Both common and rare genetic variants contribute to neural dysfunction, impacting cognition and behavior. This study investigates the molecular effects of genetic variants on human cortical single-cell types using a single-exon analysis approach. Integrating exon-level eQTLs (common variants influencing exon expression) and joint exon eQT-Scores (combining polygenic risk scores with exon-level gene expression) from a postmortem psychiatric cohort (BD = 15, MDD = 24, schizophrenia = 68, controls = 62) with schizophrenia-focused rare variant data from the SCHEMA consortium, we identified 110 core genes enriched in pathways including circadian entrainment (FDR = 0.02), cortisol synthesis and secretion (FDR = 0.026), and dopaminergic synapse (FDR = 0.038). Additional enriched pathways included hormone signaling (FDRs < 0.0298, including insulin, GnRH, aldosterone, and growth hormone pathways) and, notably, adrenergic signaling in cardiomyocytes (FDR = 0.0028). These pathways highlight shared molecular mechanisms in the three disorders. Single-nuclei RNA sequencing data from three cortical regions revealed that these core set genes are predominantly expressed in excitatory neuron layers 2-6 of the dorsolateral prefrontal cortex, linking molecular changes to cell types involved in cognitive dysfunction. Our results demonstrate the power of integrating multimodal genetic and transcriptomic data at the exon level. This approach moves beyond symptom-based diagnoses toward molecular classifications, identifying potential therapeutic targets for psychiatric disorders.
双相情感障碍(BD)、重度抑郁症(MDD)和精神分裂症具有共同的遗传结构,但其分子机制仍不清楚。常见和罕见的基因变异均会导致神经功能障碍,影响认知和行为。本研究采用单外显子分析方法,研究基因变异对人类皮质单细胞类型的分子影响。我们将来自一个死后精神病学队列(BD = 15例、MDD = 24例、精神分裂症 = 68例、对照 = 62例)的外显子水平表达数量性状基因座(eQTL,即影响外显子表达的常见变异)和联合外显子eQT分数(将多基因风险评分与外显子水平基因表达相结合)与来自SCHEMA联盟的以精神分裂症为重点的罕见变异数据进行整合,确定了110个核心基因,这些基因在包括昼夜节律调节(错误发现率FDR = 0.02)、皮质醇合成与分泌(FDR = 0.026)以及多巴胺能突触(FDR = 0.038)等通路中富集。其他富集通路包括激素信号传导(FDR < 0.0298,包括胰岛素、促性腺激素释放激素、醛固酮和生长激素通路),值得注意的是,还有心肌细胞中的肾上腺素能信号传导(FDR = 0.0028)。这些通路突出了这三种疾病中共同的分子机制。来自三个皮质区域的单核RNA测序数据显示,这些核心基因主要在背外侧前额叶皮质的兴奋性神经元第2 - 6层表达,将分子变化与涉及认知功能障碍的细胞类型联系起来。我们的结果证明了在外显子水平整合多模态遗传和转录组数据的作用。这种方法超越了基于症状的诊断,朝着分子分类发展,确定了精神疾病的潜在治疗靶点。