Zhang Kuijie, Ma Xiaodong, Zhou Xicheng, Qiu Gang, Zhang Chunjuan
Haiyan People's Hospital, Jiaxing, Zhejiang, China.
Front Public Health. 2025 Apr 4;13:1559603. doi: 10.3389/fpubh.2025.1559603. eCollection 2025.
This study aimed to evaluate the relationship between CBC-derived inflammatory markers (NLR, PLR, NPAR, SII, SIRI, and AISI) and all-cause mortality (ACM) risk in arthritis (AR) patients with hypertensive (HTN) using data from the NHANES.
We employed weighted multivariable logistic regression and WQS regression to explore the relationship between inflammatory markers and ACM in AR patients, as well as to determine the weights of different markers. Kaplan-Meier curves, restricted cubic splines (RCS) and ROC curves were utilized to monitor cumulative survival differences, non-linear relationships and diagnostic utility of the markers for ACM risk, respectively. Key markers were selected using XGBoost and LASSO regression machine learning methods, and a nomogram prognostic model was constructed and evaluated through calibration curves and decision curve analysis (DCA).
The study included 4,058 AR patients with HTN, with 1,064 deaths over a median 89-month follow-up. All six inflammatory markers were significantly higher in the deceased group ( < 0.001). Weighted multivariable logistic regression showed these markers' elevated levels significantly correlated with increased ACM risk in hypertensive AR patients across all models ( < 0.001). Kaplan-Meier analysis linked higher marker scores to lower survival rates in AR patients with HTN ( < 0.001). WQS models found a positive correlation between the markers and hypertensive AR patients ( < 0.001), with NPAR having the greatest impact (70.02%) and SIRI next (29.01%). ROC analysis showed SIRI had the highest AUC (0.624) for ACM risk prediction, closely followed by NPAR (AUC = 0.618). XGBoost and LASSO regression identified NPAR and SIRI as the most influential markers, with higher LASSO-based risk scores correlating to increased mortality risk (HR, 2.07; 95% CI, 1.83-2.35; < 0.01). RCS models revealed non-linear correlations between NPAR (Pnon-linear<0.01) and SIRI (Pnon-linear<0.01) with ACM risk, showing a sharp mortality risk increase when NPAR >148.56 and SIRI >1.51. A prognostic model using NPAR and SIRI optimally predicted overall survival.
These results underscore the necessity of monitoring and managing NPAR and SIRI indicators in clinical settings for AR patients with HTN, potentially improving patient survival outcomes.
本研究旨在利用美国国家健康与营养检查调查(NHANES)的数据,评估全血细胞计数衍生的炎症标志物(中性粒细胞与淋巴细胞比值[NLR]、血小板与淋巴细胞比值[PLR]、中性粒细胞与血小板比值[NPAR]、全身炎症反应指数[SII]、全身免疫炎症指数[SIRI]和急性炎症应激指数[AISI])与关节炎(AR)合并高血压(HTN)患者的全因死亡率(ACM)风险之间的关系。
我们采用加权多变量逻辑回归和加权分位数和回归(WQS)来探讨AR患者炎症标志物与ACM之间的关系,并确定不同标志物的权重。分别使用Kaplan-Meier曲线、限制性立方样条(RCS)和ROC曲线来监测累积生存差异、非线性关系以及这些标志物对ACM风险的诊断效用。使用XGBoost和LASSO回归机器学习方法选择关键标志物,并通过校准曲线和决策曲线分析(DCA)构建并评估列线图预后模型。
该研究纳入了4058例AR合并HTN患者,在中位89个月的随访期内有1064例死亡。所有六个炎症标志物在死亡组中均显著更高(P<0.001)。加权多变量逻辑回归显示,在所有模型中,这些标志物水平的升高与高血压AR患者的ACM风险增加显著相关(P<0.001)。Kaplan-Meier分析表明,较高的标志物分数与AR合并HTN患者较低的生存率相关(P<0.001)。WQS模型发现这些标志物与高血压AR患者之间存在正相关(P<0.001),其中NPAR的影响最大(70.02%),其次是SIRI(29.01%)。ROC分析显示,SIRI对ACM风险预测的AUC最高(0.624),紧随其后的是NPAR(AUC = 0.618)。XGBoost和LASSO回归确定NPAR和SIRI是最具影响力的标志物,基于LASSO的风险评分越高,与死亡风险增加相关(HR,2.07;95%CI,1.83 - 2.35;P<0.01)。RCS模型揭示了NPAR(P非线性<0.01)和SIRI(P非线性<0.01)与ACM风险之间的非线性相关性,当NPAR>148.56且SIRI>1.51时,死亡风险急剧增加。使用NPAR和SIRI的预后模型能最佳地预测总生存期。
这些结果强调了在临床环境中监测和管理AR合并HTN患者的NPAR和SIRI指标的必要性,这可能改善患者的生存结局。