Chunjuan Zhang, Yulong Wang, Xicheng Zhou, Xiaodong Ma
Haiyan People's Hospital, Jiaxing, Zhejiang, China.
Front Neurol. 2025 Apr 10;16:1562247. doi: 10.3389/fneur.2025.1562247. eCollection 2025.
Our study aims to utilize unsupervised machine learning methods to perform inflammation clustering on stroke patients via novel CBC-derived inflammatory indicators (NLR, PLR, NPAR, SII, SIRI, and AISI), evaluate the mortality risk among these different clusters and construct prognostic models to provide reference for clinical management.
A cross-sectional analysis was conducted using data from stroke participants in the U.S. NHANES 1999-2018. Weighted multivariate logistic regression was used to construct different models; consensus clustering methods were employed to subtype stroke patients based on inflammatory marker levels; LASSO regression analysis was used to construct an inflammatory risk score model to analyze the survival risks of different inflammatory subtypes; WQS regression, Cox regression, as well as XGBoost, random forest, and SVMRFE machine learning methods were used to screen hub markers which affected stroke prognosis; finally, a prognostic nomogram model based on hub inflammatory markers was constructed and evaluated using calibration and DCA curves.
A total of 918 stroke patients with a median follow-up of 79 months and 369 deaths. Weighted multivariate logistic regression analysis revealed that high SIRI and NPAR levels were significantly positively correlated with increased all-cause mortality risk in stroke patients ( < 0.001), independent of potential confounders; Consensus clustering divided patients into two inflammatory subgroups via SIRI and NPAR, with subgroup 2 having significantly higher markers and mortality risks than subgroup 1 ( < 0.001); LASSO regression analysis showed subgroup 2 had higher risk scores and shorter overall survival than subgroup 1 [HR, 1.99 (1.61-2.45), < 0.001]; WQS regression, Cox regression, and machine learning methods identified NPAR and SIRI as hub prognostic inflammatory markers; The nomogram prognostic model with NPAR and SIRI demonstrated the best net benefit for predicting 1, 3, 5 and 10-year overall survival in stroke patients.
This study shows NPAR and SIRI were key prognostic inflammatory markers and positively correlated with mortality risk ( < 0.001) for stroke patients. Patients would been divided into 2 inflammatory subtypes via them, with subtype 2 having higher values and mortality risks ( < 0.001). It suggests that enhanced monitoring and management for patients with high SIRI and NPAR levels to improve survival outcomes.
我们的研究旨在利用无监督机器学习方法,通过新型全血细胞计数衍生的炎症指标(中性粒细胞与淋巴细胞比值、血小板与淋巴细胞比值、中性粒细胞与单核细胞比值、全身炎症反应指数、全身免疫炎症指数和绝对免疫炎症指数)对中风患者进行炎症聚类,评估这些不同聚类中的死亡风险,并构建预后模型,为临床管理提供参考。
使用来自美国国家健康与营养检查调查(NHANES)1999 - 2018年中风参与者的数据进行横断面分析。采用加权多因素逻辑回归构建不同模型;采用共识聚类方法根据炎症标志物水平对中风患者进行亚型分类;使用LASSO回归分析构建炎症风险评分模型,以分析不同炎症亚型的生存风险;使用加权分位数和回归、Cox回归以及XGBoost、随机森林和支持向量机递归特征消除机器学习方法筛选影响中风预后的关键标志物;最后,构建基于关键炎症标志物的预后列线图模型,并使用校准曲线和决策曲线分析进行评估。
共有918例中风患者,中位随访时间为79个月,369例死亡。加权多因素逻辑回归分析显示,高全身免疫炎症指数和中性粒细胞与单核细胞比值水平与中风患者全因死亡风险增加显著正相关(<0.001),独立于潜在混杂因素;共识聚类通过全身免疫炎症指数和中性粒细胞与单核细胞比值将患者分为两个炎症亚组,亚组2的标志物和死亡风险显著高于亚组1(<0.001);LASSO回归分析显示亚组2的风险评分更高,总生存期比亚组1更短[风险比,1.99(1.61 - 2.45),<0.001];加权分位数和回归、Cox回归以及机器学习方法确定中性粒细胞与单核细胞比值和全身免疫炎症指数为关键的预后炎症标志物;包含中性粒细胞与单核细胞比值和全身免疫炎症指数的列线图预后模型在预测中风患者1年、3年、5年和10年总生存期方面显示出最佳净效益。
本研究表明,中性粒细胞与单核细胞比值和全身免疫炎症指数是中风患者关键的预后炎症标志物,与死亡风险呈正相关(<0.001)。通过它们可将患者分为2种炎症亚型,亚组2的值和死亡风险更高(<0.001)。这表明应加强对全身免疫炎症指数和中性粒细胞与单核细胞比值水平高的患者的监测和管理,以改善生存结局。