Suppr超能文献

跨肺压对肺振动声学响应的影响:首个数值视角

Effect of the transpulmonary pressure on the lungs' vibroacoustic response: a first numerical perspective.

作者信息

Uzundurukan Arife, Poncet Sébastien, Boffito Daria Camilla, Micheau Philippe

机构信息

Centre de Recherche Acoustique-Signal-Humain, Université de Sherbrooke, Sherbrooke, QC, Canada.

Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, QC, Canada.

出版信息

Front Digit Health. 2025 Apr 4;7:1434578. doi: 10.3389/fdgth.2025.1434578. eCollection 2025.

Abstract

In the high-stakes environment of intensive care units (ICUs), managing transpulmonary pressure is crucial for providing breathing assistance to intubated patients, particularly when combining this intervention with respiratory therapy, such as high-frequency chest compression (HFCC). Despite the complexity of lung tissues, a computed tomography-based finite element model (CT-FEM), guided by Biot's theory, can be employed to numerically predict their vibroacoustic behavior at low frequencies, where the properties of the lungs align with the theory's principles. In this work, one aims to develop an analytical model of the lungs for two different levels of transpulmonary pressure-10 cm HO (inflated lungs) and 20 cm HO (healthy lungs)-to examine the poroviscoelastic behavior of the lungs and evaluate the generated analytical model using a CT-FEM of the human thorax like a digital twin of the human thorax. Biot's theory was utilized to predict the complex-valued shear wave speed, as well as the fast and slow compression wave speeds, across a frequency range between 5 and 100 Hz. The analytically computed values were tested using a previously validated CT-FEM of the human thorax to compare respiratory therapy outcomes for intubated patients under different transpulmonary pressure levels. Besides the frequency response function of the thorax, the kinetic energy density and the strain energy density were compared for these pressure levels. The CT-FEM demonstrated that all peak points fall within the range of 20-45 Hz; therefore, this range might be considered in ICUs settings. Kinetic energy density was nearly 2.2 times higher, and strain energy density was 1.46-1.26 times higher at the first and last peaks, respectively; therefore, inflated lungs experienced greater effects than healthy ones under the same respiratory therapy conditions. Overall, this study highlights how different transpulmonary pressures affect HFCC therapy, offering insights into gentle and effective conditions for intubated patients in ICUs while revealing the lungs' 3D responses by integrating analytically predicted shear wave speed, fast and slow compression wave speeds.

摘要

在重症监护病房(ICU)这种高风险环境中,管理跨肺压对于为插管患者提供呼吸辅助至关重要,尤其是在将这种干预与呼吸治疗(如高频胸部按压(HFCC))相结合时。尽管肺组织复杂,但基于计算机断层扫描的有限元模型(CT - FEM)在比奥理论的指导下,可用于在低频下数值预测其振动声学行为,此时肺的特性符合该理论原理。在这项工作中,目标是针对两种不同水平的跨肺压——10 cmH₂O(充气肺)和20 cmH₂O(健康肺)——建立肺的分析模型,以研究肺的多孔粘弹性行为,并使用人体胸部的CT - FEM(类似于人体胸部的数字双胞胎)来评估所生成的分析模型。利用比奥理论预测在5至100 Hz频率范围内的复值剪切波速度以及快压缩波速度和慢压缩波速度。使用先前验证过的人体胸部CT - FEM对分析计算值进行测试,以比较不同跨肺压水平下插管患者的呼吸治疗结果。除了胸部的频率响应函数外,还比较了这些压力水平下的动能密度和应变能密度。CT - FEM表明所有峰值点都落在20 - 45 Hz范围内;因此,在ICU设置中可能会考虑这个范围。在第一个和最后一个峰值处,动能密度分别高出近2.2倍,应变能密度分别高出1.46 - 1.26倍;因此,在相同的呼吸治疗条件下,充气肺比健康肺受到的影响更大。总体而言,本研究突出了不同跨肺压如何影响HFCC治疗,为ICU中插管患者提供温和且有效的条件提供了见解,同时通过整合分析预测的剪切波速度、快压缩波速度和慢压缩波速度揭示了肺的三维响应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c51d/12006108/a6b8982c7ddc/fdgth-07-1434578-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验