Suppr超能文献

模拟爆炸后血清中Aβ水平的生物标志物动力学。

Modeling biomarker kinetics of Aβ levels in serum following blast.

作者信息

Norris Carly, Garimella Harsha T, Carr Walter, Boutté Angela M, Gupta Raj K, Przekwas Andrzej J

机构信息

Biomedical, Energy, and Materials Division, CFD Research Corporation, Huntsville, AL, United States.

Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States.

出版信息

Front Neurol. 2025 Apr 4;16:1548589. doi: 10.3389/fneur.2025.1548589. eCollection 2025.

Abstract

Elucidating the unique neuropathological response to blast exposure remains a barrier towards the development of diagnostic approaches for those with blast-induced traumatic brain injury (bTBI). Quantification of biomarker concentrations in the blood post-injury is typically used to inform brain injury severity. However, injury progression and associated changes in biomarker concentrations are sensitive to parameters such as the blast overpressure (BOP) magnitude and frequency of blast exposure. Through this work, a blast-dose biomarker kinetics (BxK) platform was developed and validated for Aβ42 as a promising predictor of injury post-blast. Blast-dose responses accounting for BOP magnitude and frequency were integrated into a mathematical model accounting for whole-body Aβ peptide kinetics. Validation of the developed model was performed through comparison with acute monomer levels in the blood serum of 15 service members exposed to repeated low-level blast while undergoing three-day weapons training. Amyloid precursor protein (APP) synthesis was assumed to be proportional to blast magnitude and additive effects within a window of recovery were applied to account for cumulative exposure. Aβ42 concentrations in the blood serum were predicted within 6.5 ± 5.2% on average, demonstrating model feasibility and biomarker sensitivity to blast. Outcomes discuss how modulation of patient-specific factors (age, weight, genetic factors, years of exposure, sleep) and pathophysiological factors (BBB permeability, amyloidogenic pathology, neuroinflammation) can reveal potential sources of variability in experimental data and be incorporated into the blast-dose BxK platform in future iterations. Advancements in model complexity accounting for sex-specific factors, weapon system, stress levels, risk of symptom onset, and pharmacological treatment strategies are anticipated to improve model calibration. Utilization of this blast-dose BxK model to identify drivers of pathophysiological mechanisms and predict chronic outcomes has the potential to transform bTBI diagnostic, prognostic, and therapeutic strategies.

摘要

阐明对爆炸暴露的独特神经病理学反应仍然是开发爆炸所致创伤性脑损伤(bTBI)诊断方法的一个障碍。损伤后血液中生物标志物浓度的量化通常用于判断脑损伤的严重程度。然而,损伤进展以及生物标志物浓度的相关变化对诸如爆炸超压(BOP)大小和爆炸暴露频率等参数很敏感。通过这项工作,开发并验证了一种爆炸剂量生物标志物动力学(BxK)平台,用于将β淀粉样蛋白42(Aβ42)作为爆炸后损伤的一个有前景的预测指标。考虑BOP大小和频率的爆炸剂量反应被整合到一个解释全身Aβ肽动力学的数学模型中。通过与15名在进行为期三天的武器训练期间暴露于反复低水平爆炸的现役军人血清中的急性单体水平进行比较,对所开发模型进行了验证。假设淀粉样前体蛋白(APP)的合成与爆炸强度成正比,并应用恢复窗口内的累加效应来解释累积暴露。血清中Aβ42浓度的预测平均误差在6.5±5.2%以内,证明了模型的可行性以及生物标志物对爆炸的敏感性。研究结果讨论了患者特异性因素(年龄、体重、遗传因素、暴露年限、睡眠)和病理生理因素(血脑屏障通透性、淀粉样病变、神经炎症)的调节如何揭示实验数据中潜在的变异性来源,并在未来的迭代中纳入爆炸剂量BxK平台。预计在考虑性别特异性因素、武器系统、压力水平、症状发作风险和药物治疗策略的情况下,模型复杂性的提升将改善模型校准。利用这种爆炸剂量BxK模型来识别病理生理机制的驱动因素并预测慢性结果,有可能改变bTBI的诊断、预后和治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c48d/12006977/e1e9efe224cb/fneur-16-1548589-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验