Santiago-Cuevas Alan-Javier, Palacios-Cabrera Cristian-Brayan, Tecuapa-Flores Eduardo Daniel, Bazany-Rodríguez Ivan J, Narayanan Jayanthi, Padilla-Martínez Itzia Irene, Aguilar Carlos Alberto, Thangarasu Pandiyan
Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (UNAM), 04510 Mexico City, Mexico.
División de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense s/n esquina Av. Universidad Politécnica, Tultitlán, Estado de México CP 54910, Mexico.
ACS Omega. 2025 Apr 3;10(14):13977-14000. doi: 10.1021/acsomega.4c10723. eCollection 2025 Apr 15.
In this study, we investigated the adsorption of CO by carbon quantum dot-based ferrites (MFeO, M = Co, Ni, and Zn) in the context of industrial CO emissions and global warming. The ferrites have been characterized using various analytical techniques [X-ray powder diffraction, FTIR, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS)], showing cubic spinel for CoFeO, reverse cubic spinel for NiFeO, and typical spinel for ZnFeO. A TGA study revealed a significant weight loss around 740-780 °C, indicating structural change occurred with increasing temperature. SEM and TEM images displayed spherical particles with sizes ranging from 10 to 50 nm. XPS confirmed the presence of C, O, and Fe atoms with specific cations (Co, Ni, and Zn). Electrochemical impedance Nyquist diagrams suggest a linear relationship between Z″ (ohm) and Z' (ohm) at low frequencies, but the semicircular loop obtained was significantly increased at higher frequencies. This suggests that the charge transfer resistance ( ) at the electrode boundaries (interface) is much higher than at low frequencies, indicating the resistance per area was 1853 Ω cm for carbon paste electrodes (CPE)/CoFeO and it decreased to 1652 Ω cm for CPE/NiFeO and 1672 Ω cm for CPE/ZnFeO. However, improved electron transfer with lower resistance was seen due to the composite nature of the samples (CQDs@MFeO), revealing a lower resistance (1163 Ω cm) for CQD@MFeO-CO as compared to 1567 Ω cm for MFeO. Thus, the adsorption of CO was studied electrochemically, and interaction between ferrates with CO was enhanced by the presence of CQDs in the samples. This is consistent with the adsorption of CO with the samples as it follows the Langmuir pseudo-second-order kinetics ( = 4.9, = 121.93 for CQD@CoFeO, = 2.9, = 156.52 for CQD@NiFeO, and = 3.0, = 141.71 for CQD@ZnFeO), and the data show that the adsorption efficiency has been decreased by around 1.0% after 7-8 cycles. Lastly, density functional theory analysis demonstrated the interaction of CO on the surface of the ferrites, deforming the CO linearity, which leads to a subsequent C-O interaction to form carbonate.
在本研究中,我们在工业一氧化碳排放和全球变暖的背景下,研究了基于碳量子点的铁氧体(MFeO,M = Co、Ni和Zn)对一氧化碳的吸附作用。已使用各种分析技术[X射线粉末衍射、傅里叶变换红外光谱、热重分析(TGA)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)]对这些铁氧体进行了表征,结果表明CoFeO为立方尖晶石结构,NiFeO为反立方尖晶石结构,ZnFeO为典型尖晶石结构。热重分析研究表明,在740 - 780℃左右有显著的重量损失,表明随着温度升高发生了结构变化。扫描电子显微镜和透射电子显微镜图像显示,颗粒呈球形,尺寸范围为10至50纳米。X射线光电子能谱证实了存在带有特定阳离子(Co、Ni和Zn)的C、O和Fe原子。电化学阻抗奈奎斯特图表明,在低频下Z″(欧姆)与Z'(欧姆)之间存在线性关系,但在较高频率下获得的半圆环比显著增大。这表明电极边界(界面)处的电荷转移电阻远高于低频时,表明碳糊电极(CPE)/CoFeO的单位面积电阻为1853Ω·cm,CPE/NiFeO的单位面积电阻降至1652Ω·cm,CPE/ZnFeO的单位面积电阻为1672Ω·cm。然而,由于样品(CQDs@MFeO)的复合性质,观察到电子转移得到改善且电阻降低,与MFeO的1567Ω·cm相比,CQD@MFeO - CO的电阻更低(1163Ω·cm)。因此,对一氧化碳的吸附进行了电化学研究,并且样品中碳量子点的存在增强了铁酸盐与一氧化碳之间的相互作用。这与一氧化碳在样品上的吸附情况一致,因为其遵循朗缪尔准二级动力学(CQD@CoFeO的k = 4.9,qmax = 121.93;CQD@NiFeO的k = 2.9,qmax = 156.52;CQD@ZnFeO的k = 3.0,qmax = 141.71),数据表明在7 - 8个循环后吸附效率下降了约1.0%。最后,密度泛函理论分析证明了一氧化碳在铁氧体表面的相互作用,使一氧化碳的线性发生变形,从而导致随后形成碳 - 氧相互作用以形成碳酸盐。