Suppr超能文献

铜铁氧体负载还原氧化石墨烯作为阴极材料以增强 CO 微生物电化学合成挥发性脂肪酸

Copper ferrite supported reduced graphene oxide as cathode materials to enhance microbial electrosynthesis of volatile fatty acids from CO.

机构信息

Department of Environment Science and Engineering, Kyung Hee University, Yongin, Republic of Korea.

Department of Environment Science and Engineering, Kyung Hee University, Yongin, Republic of Korea.

出版信息

Sci Total Environ. 2021 May 10;768:144477. doi: 10.1016/j.scitotenv.2020.144477. Epub 2021 Jan 4.

Abstract

Copper ferrite/reduced graphene oxide (CF/rGO) nanocomposites (NCs) was synthesized using the bio-combustion method and applied as a cathode catalyst in the microbial reduction of CO to volatile fatty acids (VFAs) in a single chamber microbial electrosynthesis system (MES). The synthesized NCs exhibited a porous network-like structure with a high surface area of CF/rGO (158.22 m/g), which was 2.24 folds higher than that of CF. The Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) analysis for CF/rGO/Carbon cloth (Cc) revealed a high reduction current density of -7.3 A/m and a low charge transfer resistance of 2.8 Ω. The isobutyrate and acetate in MES-2 (Cu/rGO/Cc) were produced at 35.37 g/m/d, which was 1.53 folds higher than that of MES-1 (bare Cc: 23.10 g/m/d). The columbic efficiency (77.78%) and total VFA concentration (1941.13 ± 83 mg COD/L) were noted to be 1.97 and 1.6 folds higher for MES-2 than MES-1, respectively. The Tafel plot drawn from the CV curves exhibited an exchange current density value of MES-2 that was 3.46 A/m, and this value was 1.19 and 33.92 folds higher than that of MES-1 and abiotic CF/rGO/Cc, respectively. Field emission scanning electron microscopy (FESEM) observations revealed enhanced rod-shaped bacteria had grown on the cathode suggesting excellent biocompatible and multi-length scale porosity of CF/rGO catalysts for enhanced colonization of microbes. The phyla Proteobacteria (Betaproteobacteria), Bacteroidetes, and Firmicutes were highly abundant as the dominant microbial communities on the cathode, which might played a major role in bioelectrochemical CO reduction to VFAs. The results from this study clearly demonstrate that the CF/rGO/Cc electrode could serve as a conductive element between microbes and bactericidal electrodes with excellent electrochemical properties to enable performance of the MES.

摘要

采用生物燃烧法合成了铜铁氧体/还原氧化石墨烯(CF/rGO)纳米复合材料(NCs),并将其作为阴极催化剂应用于单室微生物电解合成系统(MES)中 CO 微生物还原为挥发性脂肪酸(VFAs)。合成的 NCs 具有多孔网络状结构,具有较高的 CF/rGO 比表面积(158.22 m/g),是 CF 的 2.24 倍。循环伏安法(CV)和电化学阻抗谱(EIS)分析表明,CF/rGO/碳纤维布(Cc)的还原电流密度高,为-7.3 A/m,电荷转移电阻低,为 2.8 Ω。MES-2(Cu/rGO/Cc)中的异丁酸盐和乙酸盐的产量为 35.37 g/m/d,是 MES-1(裸 Cc:23.10 g/m/d)的 1.53 倍。MES-2 的库仑效率(77.78%)和总 VFA 浓度(1941.13±83 mg COD/L)分别比 MES-1 高 1.97 倍和 1.6 倍。从 CV 曲线绘制的塔菲尔图表明,MES-2 的交换电流密度值为 3.46 A/m,分别是 MES-1 和非生物 CF/rGO/Cc 的 1.19 倍和 33.92 倍。场发射扫描电子显微镜(FESEM)观察表明,在阴极上生长了增强的棒状细菌,表明 CF/rGO 催化剂具有良好的生物相容性和多长度尺度的多孔性,有利于微生物的定殖。变形菌门(β变形菌)、拟杆菌门和厚壁菌门是阴极上高度丰富的优势微生物群落,它们可能在生物电化学 CO 还原为 VFAs 中发挥主要作用。本研究结果清楚地表明,CF/rGO/Cc 电极可以作为微生物和杀菌电极之间的导电元件,具有优异的电化学性能,能够提高 MES 的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验